Matching Items (2)
Filtering by

Clear all filters

137094-Thumbnail Image.png
Description
Tempo control is a crucial part of musicianship that can provide an obstacle for novice musicians. The current study examines why novice percussionists increase their playing tempo when they increase their loudness (in music, loudness is referred to as dynamics). This study tested five hypotheses: 1) As actual tempo changes,

Tempo control is a crucial part of musicianship that can provide an obstacle for novice musicians. The current study examines why novice percussionists increase their playing tempo when they increase their loudness (in music, loudness is referred to as dynamics). This study tested five hypotheses: 1) As actual tempo changes, listeners perceive that the tempo is changing; 2) There is a perceptual bias to perceive increases in acoustic intensity as also increasing in tempo; 3) All individuals, regardless of percussion experience, display the bias described in hypothesis 2; 4) Unskilled or non-percussionists increase or decrease produced tempo as they respectively increase or decrease loudness; and 5) Skilled percussionist produce less change in tempo due to changes in loudness than non-percussionists. In Experiment 1, percussionists and non-percussionists listened to metronome samples that gradually change in intensity and/or tempo. Participants identified the direction and size of their perceived tempo change using a computer mouse. In Experiment 2, both groups of participants produced various tempo and dynamic changes on a drum pad. Our findings support that both percussionists and non-percussionists, to some extent, display a perceptual bias to perceive tempo changes as a function of intensity changes. We also found that non-percussionists altered their tempo as a function of changing dynamic levels, whereas percussionists did not. Overall, our findings support that listeners tend to experience some integrality between perceptual dimensions of perceived tempo and loudness. Dimensional integration also persists when playing percussion instruments though experience with percussion instruments reduces this effect.
ContributorsJohnson, Adam Gregory (Author) / McBeath, Michael (Thesis director) / Glenberg, Arthur (Committee member) / Yost, William (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2014-05
137669-Thumbnail Image.png
Description
When listeners hear sentences presented simultaneously, the listeners are better able to discriminate between speakers when there is a difference in fundamental frequency (F0). This paper explores the use of a pulse train vocoder to simulate cochlear implant listening. A pulse train vocoder, rather than a noise or tonal vocoder,

When listeners hear sentences presented simultaneously, the listeners are better able to discriminate between speakers when there is a difference in fundamental frequency (F0). This paper explores the use of a pulse train vocoder to simulate cochlear implant listening. A pulse train vocoder, rather than a noise or tonal vocoder, was used so the fundamental frequency (F0) of speech would be well represented. The results of this experiment showed that listeners are able to use the F0 information to aid in speaker segregation. As expected, recognition performance is the poorest when there was no difference in F0 between speakers, and listeners performed better as the difference in F0 increased. The type of errors that the listeners made was also analyzed. The results show that when an error was made in identifying the correct word from the target sentence, the response was usually (~60%) a word that was uttered in the competing sentence.
ContributorsStanley, Nicole Ernestine (Author) / Yost, William (Thesis director) / Dorman, Michael (Committee member) / Liss, Julie (Committee member) / Barrett, The Honors College (Contributor) / Department of Speech and Hearing Science (Contributor) / Hugh Downs School of Human Communication (Contributor)
Created2013-05