Matching Items (13)
Filtering by

Clear all filters

151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
152163-Thumbnail Image.png
Description
This is a two-part thesis: Part 1 of this thesis tests and validates the methodology and mathematical models of the International Electrotechnical Commission (IEC) 61853-2 standard for the measurement of angle of incidence (AOI) effects on photovoltaic modules. Flat-plate photovoltaic modules in the field operate under a wide range of

This is a two-part thesis: Part 1 of this thesis tests and validates the methodology and mathematical models of the International Electrotechnical Commission (IEC) 61853-2 standard for the measurement of angle of incidence (AOI) effects on photovoltaic modules. Flat-plate photovoltaic modules in the field operate under a wide range of environmental conditions. The purpose of IEC 61853-2 is to characterize photovoltaic modules' performance under specific environmental conditions. Part 1 of this report focuses specifically on AOI. To accurately test and validate IEC 61853-2 standard for measuring AOI, meticulous experimental setup and test procedures were followed. Modules of five different photovoltaic technology types with glass superstrates were tested. Test results show practically identical relative light transmission plots for all five test modules. The experimental results were compared to theoretical and empirical models for relative light transmission of air-glass interface. IEC 61853-2 states "for the flat glass superstrate modules, the AOI test does not need to be performed; rather, the data of a flat glass air interface can be used." The results obtained in this thesis validate this statement. This work was performed in collaboration with another Master of Science student (Surynarayana Janakeeraman) and the test results are presented in two masters theses. Part 2 of this thesis is to develop non-intrusive techniques to accurately measure the quantum efficiency (QE) of a single-junction crystalline silicon cell within a commercial module. This thesis will describe in detail all the equipment and conditions necessary to measure QE and discuss the factors which may influence this measurement. The ability to utilize a non-intrusive test to measure quantum efficiency of a cell within a module is extremely beneficial for reliability testing of commercial modules. Detailed methodologies for this innovative test procedure are not widely available in industry because equipment and measurement techniques have not been explored extensively. This paper will provide a literature review describing relevant theories and measurement techniques related to measuring the QE of a cell within a module. The testing methodology and necessary equipment will be described in detail. Results and conclusions provide the overall accuracy of the measurements and discuss the parameters affecting these measurements.
ContributorsKnisely, Brett (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2013
153470-Thumbnail Image.png
Description
Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent

Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent covers and refractive index prior to develop a solar water heater with improved optical efficiency and thermal efficiency for the collector. Numerical simulation is conducted on the performance of the liquid flat plate collector for July 21st and October 21st from 8 am to 4 pm with different refractive index values 1.1, 1.4, 1.7 and different numbers of transparent covers (0-3). In order to accomplish the proposed method the formulation and solutions are executed using simple software MATLAB. The result demonstrates efficiency of flat plate collector increases with the increase of number of covers. The performance of collector decreases when refractive index is higher. The improved useful heat gain is obtained when number of cover used is 3 and refractive index is 1.1.
ContributorsSupriti, Shahina Parvin (Author) / Rogers, Bradley (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2015
150405-Thumbnail Image.png
Description
Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new

Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new degradation mechanisms. These new degradation mechanisms are not recognized by qualification stress tests. To study and model the effect of high system voltages, recently, potential induced degradation (PID) test method has been introduced. Using PID studies, it has been reported that high voltage failure rates are essentially due to increased leakage currents from active semiconducting layer to the grounded module frame, through encapsulant and/or glass. This project involved designing and commissioning of a new PID test bed at Photovoltaic Reliability Laboratory (PRL) of Arizona State University (ASU) to study the mechanisms of HV induced degradation. In this study, PID stress tests have been performed on accelerated stress modules, in addition to fresh modules of crystalline silicon technology. Accelerated stressing includes thermal cycling (TC200 cycles) and damp heat (1000 hours) tests as per IEC 61215. Failure rates in field deployed modules that are exposed to long term weather conditions are better simulated by conducting HV tests on prior accelerated stress tested modules. The PID testing was performed in 3 phases on a set of 5 mono crystalline silicon modules. In Phase-I of PID test, a positive bias of +600 V was applied, between shorted leads and frame of each module, on 3 modules with conducting carbon coating on glass superstrate. The 3 module set was comprised of: 1 fresh control, TC200 and DH1000. The PID test was conducted in an environmental chamber by stressing the modules at 85°C, for 35 hours with an intermittent evaluation for Arrhenius effects. In the Phase-II, a negative bias of -600 V was applied on a set of 3 modules in the chamber as defined above. The 3 module set in phase-II was comprised of: control module from phase-I, TC200 and DH1000. In the Phase-III, the same set of 3 modules which were used in the phase-II again subjected to +600 V bias to observe the recovery of lost power during the Phase-II. Electrical performance, infrared (IR) and electroluminescence (EL) were done prior and post PID testing. It was observed that high voltage positive bias in the first phase resulted in little
o power loss, high voltage negative bias in the second phase caused significant power loss and the high voltage positive bias in the third phase resulted in major recovery of lost power.
ContributorsGoranti, Sandhya (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150421-Thumbnail Image.png
Description
Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.
ContributorsJaspreet Singh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2011
151139-Thumbnail Image.png
Description
Research was conducted to quantify the energy and cost savings of two different domestic solar water heating systems compared to an all-electric water heater for a four-person household in Phoenix, Arizona. The knowledge gained from this research will enable utilities to better align incentives and consumers to make more informed

Research was conducted to quantify the energy and cost savings of two different domestic solar water heating systems compared to an all-electric water heater for a four-person household in Phoenix, Arizona. The knowledge gained from this research will enable utilities to better align incentives and consumers to make more informed decisions prior to purchasing a solar water heater. Daily energy and temperature data were collected in a controlled, closed environment lab. Three mathematical models were designed in TRNSYS 17, a transient system simulation tool. The data from the lab were used to validate the TRNSYS models, and the TRNSYS results were used to project annual cost and energy savings for the solar water heaters. The projected energy savings for a four-person household in Phoenix, Arizona are 80% when using the SunEarth® system with an insulated and glazed flat-plate collector, and 49% when using the FAFCO® system with unglazed, non-insulated flat-plate collectors. Utilizing all available federal, state, and utility incentives, a consumer could expect to recoup his or her investment after the fifth year if purchasing a SunEarth® system, and after the eighth year if purchasing a FAFCO® system. Over the 20-year analysis period, a consumer could expect to save $2,519 with the SunEarth® system, and $971 with the FAFCO® system.
ContributorsDe Fresart, Edouard Thomas (Author) / Rogers, Bradley (Thesis advisor) / Arizona State University (Publisher)
Created2012
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015
153789-Thumbnail Image.png
Description
This is a two-part thesis.

Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules

This is a two-part thesis.

Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules.

Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives.

The indoor and outdoor soiling studies were jointly performed by two Masters Students, Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk analyses of two power plants (model J and model JVA) were jointly performed by these two Masters students. Both power plants are located at the same cold-dry climate, but one power plant carries framed modules and the other carries frameless modules. This thesis presents the results obtained on the frameless modules.
ContributorsRajasekar, Vidyashree (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015
154502-Thumbnail Image.png
Description
Testing was conducted for a solar assisted water heater and conventional all electric water heater for the purpose of investigating the advantages of utilizing solar energy to heat up water. The testing conducted simulated a four person household living in the Phoenix, Arizona region. With sensors and a weather station,

Testing was conducted for a solar assisted water heater and conventional all electric water heater for the purpose of investigating the advantages of utilizing solar energy to heat up water. The testing conducted simulated a four person household living in the Phoenix, Arizona region. With sensors and a weather station, data was gathered and analyzed for the water heaters. Performance patterns were observed that correlated to ambient conditions and functionality of the solar assisted water heater. This helped better understand how the solar water heater functioned and how it may continue to function. The testing for the solar assisted water heater was replicated with the all-electric water heater. One to one analyzes was conducted for comparison. The efficiency and advantages were displayed by the solar assisted water heater having a 61% efficiency. Performance parameters were calculated for the solar assisted water heater and it showed how accurate certified standards are. The results showed 8% difference in performance, but differed in energy savings. This further displayed the effects of uncontrollable ambient conditions and the effects of different testing conditions.
ContributorsMartínez, Luis, active 1995 (Author) / Rajadas, John (Thesis advisor) / Kannan, Arunachala (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
154407-Thumbnail Image.png
Description
With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy,

With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy, wind energy and hydroelectric power. This thesis

focuses on developing a concentrating solar thermal energy unit for the application

of an on-demand hot water system with phase change material. This system already

has a prototype constructed and needs refinement in several areas in order to

increase its efficiency to determine if the system could ever reach a point of

feasibility in a residential application. Having put additional control refining

systems on the solar water heat collector, it can be deduced that the efficiency has

increased. However, due to limited testing and analysis it is undetermined just how

much the efficiency of the system has increased. At minimum, the capabilities of the

research platform have dramatically increased, allowing future research to more

accurately study the dynamics of the system as well as conduct studies in more

targeted areas of engineering. In this aspect, the thesis was successful.
ContributorsDonovan, Benjamin (Author) / Rajadas, John (Thesis advisor) / Kannan, Arunachala (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016