Matching Items (1)
136991-Thumbnail Image.png
Description
The ideal function of an upper limb prosthesis is to replace the human hand and arm, but a gulf in functionality between prostheses and biological arms still exists, in large part due the absence of the sense of touch. Tactile sensing of the human hand comprises a key component of

The ideal function of an upper limb prosthesis is to replace the human hand and arm, but a gulf in functionality between prostheses and biological arms still exists, in large part due the absence of the sense of touch. Tactile sensing of the human hand comprises a key component of a wide variety of interactions with the external environment; visual feedback alone is not always sufficient for the recreation of nuanced tasks. It is hoped that the results of this study can contribute to the advancement of prosthetics with a tactile feedback loop with the ultimate goal of replacing biological function. A three-fingered robot hand equipped with tactile sensing fingertips was used to biomimetically grasp a ball in order haptically explore the environment for a ball-in-hole task. The sensorized fingertips were used to measure the vibration, pressure, and skin deformation experienced by each fingertip. Vibration and pressure sensed by the fingertips were good indicators of changes in discrete phases of the exploratory motion such as contact with the lip of a hole. The most informative tactile cue was the skin deformation of the fingers. Upon encountering the lip of the test surface, the lagging digit experienced compression in the fingertip and radial distal region of the digit. The middle digit experienced decompression of the middle region of the finger and the lagging digit showed compression towards the middle digit and decompression in the distal-ulnar region. Larger holes caused an increase in pressure experienced by the fingertips while changes in stroke speed showed no effect on tactile data. Larger coefficients of friction between the ball and the test surface led to an increase in pressure and skin deformation of the finger. Unlike most tactile sensing studies that focus on tactile stimuli generated by direct contact between a fingertip and the environment, this preliminary study focused on tactile stimuli generated when a grasped object interacts with the environment. Findings from this study could be used to design experiments for functionally similar activities of daily living, such as the haptic search for a keyhole via a grasped key.
ContributorsLoges, Shea Remegio (Author) / Santos, Veronica (Thesis director) / Artemiadis, Panagiotis (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05