Matching Items (4)
Filtering by

Clear all filters

172824-Thumbnail Image.png
Description

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled scientists to organize egg specimens according to observable features, and to communicate their findings. The eggshell protects the developing embryo, enables gas exchange between the embryo and the environment external to the egg, and the internal components of the egg provide nutrients for the embryo. Those external and internal features that support a developing embryo leave their mark on eggshells. Dinosaur egg parataxonomy classifies those characteristics and provides insight into dinosaur egg-laying behaviors, reproductive physiology, and embryonic development.

Created2015-03-23
172861-Thumbnail Image.png
Description

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist

Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned. Towards the end of his career Tiedemann published a comparative anatomy of the brains of white Europeans, black Africans, and Orangutans, in which he argued that there were no appreciable differences between the structure of the brains of blacks, women, and white European men that would suggest they were intellectually different. Tiedemann also researched the embryonic development of the brain and circulatory systems of human fetuses.

Created2015-07-07
172776-Thumbnail Image.png
Description

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the

Neurocristopathies are a class of pathologies in vertebrates,
including humans, that result from abnormal expression, migration,
differentiation, or death of neural crest cells (NCCs) during embryonic development. NCCs are cells
derived from the embryonic cellular structure called the neural crest.
Abnormal NCCs can cause a neurocristopathy by chemically affecting the
development of the non-NCC tissues around them. They can also affect the
development of NCC tissues, causing defective migration or
proliferation of the NCCs. There are many neurocristopathies
that affect many different types of systems. Some neurocristopathies
result in albinism (piebaldism) and cleft palate in humans. Various
pigment, skin, thyroid, and hearing disorders, craniofacial and heart
abnormalities, malfunctions of the digestive tract, and tumors can be
classified as neurocristopathies. This classification ties a variety of
disorders to one embryonic origin.

Created2014-09-19
172796-Thumbnail Image.png
Description

In 1978, James Kitching discovered two dinosaur embryos in a road-cut talus at Roodraai (Red Bend) in Golden Gate Highlands National Park, South Africa. Kitching assigned the fossilized embryos to the species of long necked herbivores Massospondylus carinatus (longer vertebra) from the Early Jurassic period, between 200 and 183

In 1978, James Kitching discovered two dinosaur embryos in a road-cut talus at Roodraai (Red Bend) in Golden Gate Highlands National Park, South Africa. Kitching assigned the fossilized embryos to the species of long necked herbivores Massospondylus carinatus (longer vertebra) from the Early Jurassic period, between 200 and 183 million years ago. The embryos were partially visible but surrounded by eggshell and rock, called matrix. Kitching said that the eggs were too delicate to remove from the matrix without damage. Twenty-seven years later in 2005, Diane Scott, a member of a team led by Robert Reisz from the University of Toronto in Toronto, Canada, uncovered the two almost complete, well-articulated embryos. Scientists have inferred information from the embryos about Massospondylus dinosaurs' growth, development, and behaviors including parental care, gait, and locomotion.

Created2015-03-31