Matching Items (3)
Filtering by

Clear all filters

152929-Thumbnail Image.png
Description
Facial projection--i.e., the position of the upper face relative to the anterior cranial fossa--is an important component of craniofacial architecture in primates. Study of its variation is therefore important to understanding the bases of primate craniofacial form. Such research is relevant to studies of human evolution because the condition in

Homo

Facial projection--i.e., the position of the upper face relative to the anterior cranial fossa--is an important component of craniofacial architecture in primates. Study of its variation is therefore important to understanding the bases of primate craniofacial form. Such research is relevant to studies of human evolution because the condition in

Homo sapiens--in which facial projection is highly reduced, with the facial skeleton located primarily inferior (rather than anterior) to the braincase--is derived vis-à-vis other primates species, including others in the genus Homo. Previous research suggested that variation in facial projection is explained by: (1) cranial base angulation; (2) upper

facial length; (3) anterior cranial base length; (4) anterior sphenoid length; and/or (5) anterior middle cranial fossa length. However, previous research was based on taxonomically narrow samples and relatively small sample sizes, and comparative data on facial projection in anthropoid primates, with which these observations could be

contextualized, do not currently exist.

This dissertation fills this gap in knowledge. Specifically, data corresponding to the hypotheses listed above were collected from radiographs from a sample of anthropoid primates (N = 37 species; 756 specimens) . These data were subjected to phylogenetically-controlled multiple regression analyses. In addition, multivariate and univariate models were statistically compared, and the position of Homo sapiens relative to univariate and multivariate regression models was evaluated.

The results suggest that upper facial length, anterior cranial base length, and, to a lesser extent, cranial base angle are the most important predictors of facial projection. Homo sapiens conforms to the patterns found in anthropoid primates, suggesting that these same factors explain the condition in this species. However, a consideration of the

evidence from the fossil record in the context of these findings suggests that upper facial length is the most likely cause of the extremely low degree of facial projection in Homo sapiens. These results downplay the role of the brain in shaping the form of the human cranium. Instead, these results suggest that reduction in facial skeleton size--which may

be due to changes in diet--may be more important than previously suggested.
ContributorsRitzman, Terrence (Author) / Schwartz, Gary T (Thesis advisor) / Kimbel, William H. (Committee member) / Kaufman, Jason (Committee member) / Arizona State University (Publisher)
Created2014
136980-Thumbnail Image.png
Description
Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional

Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional significance of cervical curvature, the identification of cervical lordosis in osteological material, and the representation of the cervical spine in the hominin fossil record.
ContributorsFatica, Lawrence Martin (Author) / Kimbel, William (Thesis director) / Reed, Kaye (Committee member) / Schwartz, Gary (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
154568-Thumbnail Image.png
Description
Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development

Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development and nearly vestigial deciduous teeth. The development and functional occlusion of the primary postcanine dentition (i.e., deciduous premolars and molars) coincides with several life history parameters in great apes and indriids. This dissertation explored great ape dental macrowear, molar development in indriids, and molar size in lemurs with a broader goal of improving reconstructions of life history profiles in extinct primates. To this aim, macrowear and dental development were analyzed in apes and lemurs, respectively. Occlusal casts (six great ape species; N=278) were scanned to track mandibular fourth deciduous premolar (dp4) macrowear. Utilizing dental topographic analyses, changes in occlusal gradient and terrain were quantified. A subset of the great ape data (four species; n=199) was analyzed to test if differences in dp4 wear correlate with age at weaning. Using dental histology, molar development was reconstructed for Indri indri (n=1) and Avahi laniger (n=1). Life history and molar size data were collected from the literature. The results of this dissertation demonstrate that most great apes exhibited evidence of topographic maintenance, suggesting dp4s wear in a manner that maintain functional efficiency during growth and development; however, the manner in which maintenance is achieved (e.g., preservation of relief or complexity) is species specific. Dp4 macrowear is not correlated with age at weaning in great apes and is probably unreliable to reconstruct age at weaning in hominins. The pace of molar development in members of the indriid- palaeopropithecid clade did not correlate with body or brain size, an association present in several other primates. Associations of molar size with age at weaning suggest that expanding other developmental models (e.g., the inhibitory cascade) to life history is worth consideration. The broad variation in macrowear, dental development, and size highlights how the primary dentition may correlate with different life history parameters depending on the species and ecological setting, an important consideration when using teeth to reconstruct life history profiles.
ContributorsCatlett, Kierstin Kay (Author) / Schwartz, Gary (Thesis advisor) / Barton, Michael (Committee member) / Godfrey, Laurie (Committee member) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2016