Matching Items (2)
Filtering by

Clear all filters

136922-Thumbnail Image.png
Description
A high voltage plasma arc can be created and sustained in air by subjecting the gases to an electric field with high voltage potential, causing ionization. The internal energy of the ionized gases can be transferred to corresponding pressure waves when the matter involved switches between the gaseous and plasma

A high voltage plasma arc can be created and sustained in air by subjecting the gases to an electric field with high voltage potential, causing ionization. The internal energy of the ionized gases can be transferred to corresponding pressure waves when the matter involved switches between the gaseous and plasma states. By pulse-width modulating a transformer driving signal, the transfer of internal electrical energy to resonating pressure waves may be controlled. Audio wave input to the driver signal can then be modulated into the carrier wave and be used to determine the width of each pulse in the plasma, thus reconstructing the audio signal as pressure, or sound waves, as the plasma arc switches on and off. The result will be the audio waveform resonating out of the plasma arc as audible sound, and thus creating a plasma loudspeaker. Theory of operation was tested through construction of a plasma arc speaker, and resultant audio playback was analyzed. This analysis confirmed accurate reproduction of audio signal in audible sound.
ContributorsBoehringer, Brian Thomas (Author) / Roedel, Ronald (Thesis director) / Huffman, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
173447-Thumbnail Image.png
Description

In 2007, Dennis Lo and his colleagues used digital polymerase chain reaction or PCR to detect trisomy 21 in maternal blood, validating the method as a means to detect fetal chromosomal aneuploidies, or an abnormal number of chromosomes in a cell. The team conducted their research at the Chinese University

In 2007, Dennis Lo and his colleagues used digital polymerase chain reaction or PCR to detect trisomy 21 in maternal blood, validating the method as a means to detect fetal chromosomal aneuploidies, or an abnormal number of chromosomes in a cell. The team conducted their research at the Chinese University of Hong Kong in Hong Kong, Hong Kong, and at the Boston University in Boston, Massachusetts. Because small amounts of fetal DNA appear in maternal blood during pregnancy, Lo and his team hypothesized that they could detect fetal chromosomal aneuploidy trisomy 21, or Down’s syndrome, in a sample of maternal blood. The group diagnosed Down’s syndrome in unborn fetuses by first taking a maternal blood sample, then amplifying the small amounts of fetal DNA in the maternal blood using digital PCR, and applying two genetic methods to that sample. Lo and his colleagues’ experiment demonstrated the accuracy of a novel, noninvasive method for fetal chromosomal aneuploidy testing that can enable people to make informed decisions about their pregnancies.

Created2017-11-08