Matching Items (13)
Filtering by

Clear all filters

151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
152850-Thumbnail Image.png
Description
This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other

This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other hand grow out of the plane of substrate. It was found, using the Au-seeded vapor – liquid – solid technique, that epitaxial single-crystal SiNW can be grown laterally along Si(111) substrates that have been miscut toward [11− 2]. The ratio of lateral-to-vertical NW was found to increase as the miscut angle increased and as disilane pressure and substrate temperature decreased. Based on this observation, growth parameters were identified whereby all of the deposited Au seeds formed lateral NW. Furthermore, the nanofaceted substrate guided the growth via a mechanism that involved pinning of the trijunction at the liquid/solid interface of the growing nanowire.

Next, the growth of selenide heterostructures was explored. Specifically, molecular beam epitaxy was utilized to grow In2Se3 and Bi2Se3 films on h-BN, highly oriented pyrolytic graphite and Si(111) substrates. Growth optimizations of In2Se3 and Bi2Se3 films were carried out by systematically varying the growth parameters. While the growth of these films was demonstrated on h-BN and HOPG surface, the majority of the effort was focused on growth on Si(111). Atomically flat terraces that extended laterally for several hundred nm, which were separated by single quintuple layer high steps characterized surface of the best In2Se3 films grown on Si(111). These In2Se3 films were suitable for subsequent high quality epitaxy of Bi2Se3 .

The last part of this dissertation was focused on a recently initiated and ongoing study of graphene growth on liquid metal surfaces. The initial part of the study comprised a successful modification of an existing growth system to accommodate graphene synthesis and process development for reproducible graphene growth. Graphene was grown on Cu, Au and AuCu alloys at varioua conditions. Preliminary results showed triangular features on the liquid part of the Cu metal surface. For Au, and AuCu alloys, hexagonal features were noticed both on the solid and liquid parts.
ContributorsRathi, Somilkumar J (Author) / Drucker, Jeffery (Thesis advisor) / Smith, David (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2014
153047-Thumbnail Image.png
Description
This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy

This dissertation aims to demonstrate a new approach to fabricating solar cells for spectrum-splitting photovoltaic systems with the potential to reduce their cost and complexity of manufacturing, called Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells. Single crystal semiconductor alloy nanowire (NW) ensembles are grown with the alloy composition and band gap changing continuously across a broad range over the surface of a single substrate in a single, inexpensive growth step by the Dual-Gradient Method. The nanowire ensembles then serve as the absorbing materials in a set of solar cells for spectrum-splitting photovoltaic systems.

Preliminary design and simulation studies based on Anderson's model band line-ups were undertaken for CdPbS and InGaN alloys. Systems of six subcells obtained efficiencies in the 32-38% range for CdPbS and 34-40% for InGaN at 1-240 suns, though both materials systems require significant development before these results could be achieved experimentally. For an experimental demonstration, CdSSe was selected due to its availability. Proof-of-concept CdSSe nanowire ensemble solar cells with two subcells were fabricated simultaneously on one substrate. I-V characterization under 1 sun AM1.5G conditions yielded open-circuit voltages (Voc) up to 307 and 173 mV and short-circuit current densities (Jsc) up to 0.091 and 0.974 mA/cm2 for the CdS- and CdSe-rich cells, respectively. Similar thin film cells were also fabricated for comparison. The nanowire cells showed substantially higher Voc than the film cells, which was attributed to higher material quality in the CdSSe absorber. I-V measurements were also conducted with optical filters to simulate a simple form of spectrum-splitting. The CdS-rich cells showed uniformly higher Voc and fill factor (FF) than the CdSe-rich cells, as expected due to their larger band gaps. This suggested higher power density was produced by the CdS-rich cells on the single-nanowire level, which is the principal benefit of spectrum-splitting. These results constitute a proof-of-concept experimental demonstration of the MILAMB approach to fabricating multiple cells for spectrum-splitting photovoltaics. Future systems based on this approach could help to reduce the cost and complexity of manufacturing spectrum-splitting photovoltaic systems and offer a low cost alternative to multi-junction tandems for achieving high efficiencies.
ContributorsCaselli, Derek (Author) / Ning, Cun-Zheng (Thesis advisor) / Tao, Meng (Committee member) / Yu, Hongbin (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
153383-Thumbnail Image.png
Description
Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/LixGe core/shell NW.

The mean inner potential (MIP) and inelastic

Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/LixGe core/shell NW.

The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V±0.2V and 55±3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7±0.6V and 46±2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations.

The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0±0.3V and 0.5±0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n--p junction transition region and possible surface charge, were also systematically studied using simulations.

Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4±0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations.

The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li content. A model was proposed to explain the lower measured Ge potential, and the trapped electron density in Ge core was calculated to be 3×1018 electrons/cm3. The Li amount during lithiation was also calculated using MIP and volume ratio, indicating that it was lower than the fully lithiated phase.
ContributorsGan, Zhaofeng (Author) / Mccartney, Martha R (Thesis advisor) / Smith, David J. (Thesis advisor) / Drucker, Jeffery (Committee member) / Bennett, Peter A (Committee member) / Arizona State University (Publisher)
Created2015
150213-Thumbnail Image.png
Description
Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively

Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively studied for nanoscale optoelectronic applications. A systematic and comprehensive optical and microstructural study of several important infrared semiconductor NWs is presented in this thesis, which includes InAs, PbS, InGaAs, erbium chloride silicate and erbium silicate. Micro-photoluminescence (PL) and transmission electron microscope (TEM) were utilized in conjunction to characterize the optical and microstructure of these wires. The focus of this thesis is on optical study of semiconductor NWs in the mid-infrared wavelengths. First, differently structured InAs NWs grown using various methods were characterized and compared. Three main PL peaks which are below, near and above InAs bandgap, respectively, were observed. The octadecylthiol self-assembled monolayer was employed to passivate the surface of InAs NWs to eliminate or reduce the effects of the surface states. The band-edge emission from wurtzite-structured NWs was completely recovered after passivatoin. The passivated NWs showed very good stability in air and under heat. In the second part, mid-infrared optical study was conducted on PbS wires of subwavelength diameter and lasing was demonstrated under optical pumping. The PbS wires were grown on Si substrate using chemical vapor deposition and have a rock-salt cubic structure. Single-mode lasing at the wavelength of ~3000-4000 nm was obtained from single as-grown PbS wire up to the temperature of 115 K. PL characterization was also utilized to demonstrate the highest crystallinity of the vertical arrays of InP and InGaAs/InP composition-graded heterostructure NWs made by a top-down fabrication method. TEM-related measurements were performed to study the crystal structures and elemental compositions of the Er-compound core-shell NWs. The core-shell NWs consist of an orthorhombic-structured erbium chloride silicate shell and a cubic-structured silicon core. These NWs provide unique Si-compatible materials with emission at 1530 nm for optical communications and solid state lasers.
ContributorsSun, Minghua (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Carpenter, Ray W. (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2011
150556-Thumbnail Image.png
Description
In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to

In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to find out the properties of Erbium Chloride Silicate (ECS) and two segment CdS-CdSe samples. In the first part of my research, growth of very new material, Erbium Chloride Silicate (ECS), in form of core/shell Si/ECS and pure ECS nanowires, was demonstrated. This new material has very fascinating properties for new Si based photonic devices. The Erbium density in those nanowires is which is very high value compared to the other Erbium doped materials. It was shown that the luminescence peaks of ECS nanowires are very sharp and stronger than their counterparts. Furthermore, both PL and XRD peaks get sharper and stronger as growth temperature increases and this shows that crystalline quality of ECS nanowires gets better with higher temperature. In the second part, I did a very detail research for growing two segment axial nanowires or radial belts and report that the structure type mostly depends on the growth temperature. Since our final step is to create white light LEDs using single axial nanowires which have three different regions grown with distinct materials and give red, green and blue colors simultaneously, we worked on growing CdS-CdSe nanowires or belts for the first step of our aim. Those products were successfully grown and they gave two luminescence peaks with maximum 160 nm wavelength separation depending on the growth conditions. It was observed that products become more likely belt once the substrate temperature increases. Also, dominance between VLS and VS is very critical to determine the shape of the products and the substitution of CdS by CdSe is very effective; hence, CdSe growth time should be chosen accordingly. However, it was shown two segmented products can be synthesized by picking the right conditions and with very careful analyses. We also demonstrated that simultaneous two colors lasing from a single segmented belt structures is possible with strong enough-pumping-power.
ContributorsTurkdogan, Sunay (Author) / Ning, Cun-Zheng (Thesis advisor) / Tao, Meng (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150232-Thumbnail Image.png
Description
Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental

Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental results. In particular, the nanowires are assumed to be cylindrical, and their elastic constants isotropic. The simple analytical model is subsequently validated by performing numerical calculations using realistic nanowire geometries and cubic, anisotropic elastic constants. The comparison confirms that the analytic model is an excellent approximation that greatly facilitates quantitative Raman work, with expected errors in the strain determination that do not exceed 10%. Experimental Raman spectra of a variety of core-shell nanowires are presented, and the strain in the nanowires is assessed using the models described above. It is found that all structures present a significant degree of strain relaxation relative to ideal, fully strained Ge-Si core-shell structures. The analytical models are modified to quantify this strain relaxation.
ContributorsSingh, Rachna (Author) / Menéndez, Jose (Thesis advisor) / Drucker, Jeffery (Committee member) / Ponce, Fernando (Committee member) / Tsen, Kong-Thon (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150681-Thumbnail Image.png
Description
This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This

This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied to nanowires (NWs). In fact this is a convenient and useful approach for evaluating the quality of NWs since it considers not only the PL emission but also the absorption of NWs. The process is well illustrated and performed with both wavelength-dependent and power-dependent measurements. The measured PLQE is in the range of 0.3% ~ 5.4%. During the measurement, a phenomenon called photodegradation is observed and examined by a set of power-dependence measurements. This effect can be a factor for underestimating the PLQE and a procedure is introduced during the sample preparation process which managed to reduce this effect for some degree.
ContributorsChen, Dongzi (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
153888-Thumbnail Image.png
Description
Nanowires are one-dimensional (1D) structures with diameter on the nanometer scales with a high length-to-diameter aspect ratio. Nanowires of various materials including semiconductors, dielectrics and metals have been intensively researched in the past two decades for applications to electrical and optical devices. Typically, nanowires are synthesized using the vapor-liquid-solid (VLS)

Nanowires are one-dimensional (1D) structures with diameter on the nanometer scales with a high length-to-diameter aspect ratio. Nanowires of various materials including semiconductors, dielectrics and metals have been intensively researched in the past two decades for applications to electrical and optical devices. Typically, nanowires are synthesized using the vapor-liquid-solid (VLS) approach, which allows defect-free 1D growth despite the lattice mismatch between nanowires and substrates. Lattice mismatch issue is a serious problem in high-quality thin film growth of many semiconductors and non-semiconductors. Therefore, nanowires provide promising platforms for the applications requiring high crystal quality materials.

With the 1D geometry, nanowires are natural optical waveguides for light guiding and propagation. By introducing feedback mechanisms to nanowire waveguides, such as the cleaved end facets, the nanowires can work as ultra-small size lasers. Since the first demonstration of the room-temperature ultraviolet nanowire lasers in 2001, the nanowire lasers covering from ultraviolet to mid infrared wavelength ranges have been intensively studied. This dissertation focuses on the optical characterization and laser fabrication of two nanowire materials: erbium chloride silicate nanowires and composition-graded CdSSe semiconductor alloy nanowires.

Chapter 1 – 5 of this dissertation presents a comprehensive characterization of a newly developed erbium compound material, erbium chloride silicate (ECS) in a nanowire form. Extensive experiments demonstrated the high crystal quality and excellent optical properties of ECS nanowires. Optical gain higher than 30 dB/cm at 1.53 μm wavelength is demonstrated on single ECS nanowires, which is higher than the gain of any reported erbium materials. An ultra-high Q photonic crystal micro-cavity is designed on a single ECS nanowire towards the ultra-compact lasers at communication wavelengths. Such ECS nanowire lasers show the potential applications of on-chip photonics integration.

Chapter 6 – 7 presents the design and demonstration of dynamical color-controllable lasers on a single CdSSe alloy nanowire. Through the defect-free VLS growth, engineering of the alloy composition in a single nanowire is achieved. The alloy composition of CdSxSe1-x uniformly varies along the nanowire axis from x=1 to x=0, giving the opportunity of multi-color lasing in a monolithic structure. By looping the wide-bandgap end of the alloy nanowire through nanoscale manipulation, the simultaneous two-color lasing at green and red colors are demonstrated. The 107 nm wavelength separation of the two lasing colors is much larger than the gain bandwidth of typical semiconductors. Since the two-color lasing shares the output port, the color of the total lasing output can be controlled dynamically between the two fundamental colors by changing the relative output power of two lasing colors. Such multi-color lasing and continuous color tuning in a wide spectral range would eventually enable color-by-design lasers to be used for lighting, display and many other applications.
ContributorsLiu, Zhicheng (Author) / Ning, Cun-Zheng (Thesis advisor) / Palais, Joseph (Committee member) / Yu, Hongbin (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2015
156440-Thumbnail Image.png
Description
The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV,

The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, etc., given the existing rich knowledge in device fabrication based on these materials.

This dissertation explores the growth of InGaAsP alloys using a low-cost method that could be potentially important especially for III-V NW-based solar cells. The NWs were grown by Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms using a Low-Pressure Chemical Vapor Deposition (LPCVD) technique. The concept of supersaturation was employed to control the morphology of NWs through the interplay between VLS and VS growth mechanisms. Comprehensive optical and material characterizations were carried out to evaluate the quality of the grown materials.

The growth of exceptionally high quality III-V phosphide NWs of InP and GaP was studied with an emphasis on the effects of vastly different sublimation rates of the associated III and V elements. The incorporation of defects exerted by deviation from stoichiometry was examined for GaP NWs, with an aim towards maximization of bandedge-to-defect emission ratio. In addition, a VLS-VS assisted growth of highly stoichiometric InP thin films and nano-networks with a wide temperature window from 560◦C to 720◦C was demonstrated. Such growth is shown to be insensitive to the type of substrates such as silicon, InP, and fused quartz. The dual gradient method was exploited to grow composition-graded ternary alloy NWs of InGaP, InGaAs, and GaAsP with different bandgaps ranging from 0.6 eV to 2.2 eV, to be used for making laterally-arrayed multiple bandgap (LAMB) solar cells. Furthermore, a template-based growth of the NWs was attempted based on the Si/SiO2 substrate. Such platform can be used to grow a wide range of alloy nanopillar materials, without being limited by typical lattice mismatch, providing a low cost universal platform for future PV solar cells.
ContributorsHashemi Amiri, Seyed Ebrahim (Author) / Ning, Cun-Zheng (Thesis advisor) / Petuskey, William (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2018