Matching Items (1)
Filtering by

Clear all filters

171647-Thumbnail Image.png
Description
Understanding the history of water on Mars is one of the highest priority goals of the international Mars exploration community. Water would have played a key role in any potential abiogenesis in the past and will play a key role in the future human exploration of the planet. Chloride salts

Understanding the history of water on Mars is one of the highest priority goals of the international Mars exploration community. Water would have played a key role in any potential abiogenesis in the past and will play a key role in the future human exploration of the planet. Chloride salts are an indicator of past hydrologic activity in the Martian geologic record and have the potential to preserve fluid inclusions and organic material within their crystal structure over geologic timescales. This dissertation will describe an innovative method for identifying chloride salts on the Martian surface, explore the implication of their distribution within Early Noachian terrains, and document important opportunistic discoveries made in the process. Decorrelation stretched Thermal Emission Imaging System (THEMIS) infrared images have long been used to identify chloride salts on Mars, but the process has been time-consuming, subjective, and qualitative. By analyzing the entire THEMIS dataset, acquired over more than twenty years at Mars, a globally-applicable covariance matrix was calculated that describes the geologic diversity of the Martian surface. This covariance matrix allows all THEMIS daytime infrared images to be translated into globally-consistent decorrelation stretch and principal component images, enabling an automatic, objective, and quantitative method for identifying chloride salts. A new global survey located 1,605 chloride salt deposits across the Martian surface, a significant increase over previous surveys. In particular, the 257 deposits in Early Noachian terrains have characteristics that indicate they formed contemporaneously with the surrounding terrain. In addition, a chloride salt formation was identified on the floor of Ares Vallis with a unique three-dimensional structure that has been interpreted as an exposed chloride salt diapir, which would indicate the presence of a significant subsurface chloride salt layer. By improving our understanding of the distribution and diversity of chloride salts on the Martian surface, this work has provided future investigators with new tools and avenues of research to explore the history of water on Mars.
ContributorsHill, Jonathon Ryan (Author) / Christensen, Philip R. (Thesis advisor) / Sharp, Thomas G (Committee member) / Ruff, Steven W (Committee member) / Simon, Molly N (Committee member) / O'Rourke, Joseph G (Committee member) / Arizona State University (Publisher)
Created2022