Matching Items (3)
Filtering by

Clear all filters

150537-Thumbnail Image.png
Description
The field of Data Mining is widely recognized and accepted for its applications in many business problems to guide decision-making processes based on data. However, in recent times, the scope of these problems has swollen and the methods are under scrutiny for applicability and relevance to real-world circumstances. At the

The field of Data Mining is widely recognized and accepted for its applications in many business problems to guide decision-making processes based on data. However, in recent times, the scope of these problems has swollen and the methods are under scrutiny for applicability and relevance to real-world circumstances. At the crossroads of innovation and standards, it is important to examine and understand whether the current theoretical methods for industrial applications (which include KDD, SEMMA and CRISP-DM) encompass all possible scenarios that could arise in practical situations. Do the methods require changes or enhancements? As part of the thesis I study the current methods and delineate the ideas of these methods and illuminate their shortcomings which posed challenges during practical implementation. Based on the experiments conducted and the research carried out, I propose an approach which illustrates the business problems with higher accuracy and provides a broader view of the process. It is then applied to different case studies highlighting the different aspects to this approach.
ContributorsAnand, Aneeth (Author) / Liu, Huan (Thesis advisor) / Kempf, Karl G. (Thesis advisor) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
154864-Thumbnail Image.png
Description
Social media has become popular in the past decade. Facebook for example has 1.59 billion active users monthly. With such massive social networks generating lot of data, everyone is constantly looking for ways of leveraging the knowledge from social networks to make their systems more personalized to their end users.

Social media has become popular in the past decade. Facebook for example has 1.59 billion active users monthly. With such massive social networks generating lot of data, everyone is constantly looking for ways of leveraging the knowledge from social networks to make their systems more personalized to their end users. And with rapid increase in the usage of mobile phones and wearables, social media data is being tied to spatial networks. This research document proposes an efficient technique that answers socially k-Nearest Neighbors with Spatial Range Filter. The proposed approach performs a joint search on both the social and spatial domains which radically improves the performance compared to straight forward solutions. The research document proposes a novel index that combines social and spatial indexes. In other words, graph data is stored in an organized manner to filter it based on spatial (region of interest) and social constraints (top-k closest vertices) at query time. That leads to pruning necessary paths during the social graph traversal procedure, and only returns the top-K social close venues. The research document then experimentally proves how the proposed approach outperforms existing baseline approaches by at least three times and also compare how each of our algorithms perform under various conditions on a real geo-social dataset extracted from Yelp.
ContributorsPasumarthy, Nitin (Author) / Sarwat, Mohamed (Thesis advisor) / Papotti, Paolo (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2016
158517-Thumbnail Image.png
Description
In the recent times, traffic congestion and motor accidents have been a major problem for transportation in major cities. Intelligent Transportation Systems has the potential to be an effective solution in order to tackle this issue. Connected Autonomous Vehicles can cooperate at intersections, ramp merging, lane change and other conflicting

In the recent times, traffic congestion and motor accidents have been a major problem for transportation in major cities. Intelligent Transportation Systems has the potential to be an effective solution in order to tackle this issue. Connected Autonomous Vehicles can cooperate at intersections, ramp merging, lane change and other conflicting scenarios in order to resolve the conflicts and avoid collisions with other vehicles. A lot of works has been proposed for specific scenarios such as intersections, ramp merging or lane change which partially solve the conflict resolution problem. Also, one of the major issues in autonomous decision making - deadlocks have not been considered in some of the works. The existing works either do not consider deadlocks or lack a safety proof. This thesis proposes a cooperative driving solution that provides a complete navigation, conflict resolution and deadlock resolution for connected autonomous vehicles. A graph-based model is used to resolve the deadlocks between vehicles and the responsibility sensitive safety (RSS) rules have been used in order to ensure safety of the autonomous vehicles during conflict detection and resolution. This algorithm provides a complete navigation solution for an autonomous vehicle from its source to destination. The algorithm ensures that accidents do not occur even in the worst-case scenario and the decision making is deadlock free.
ContributorsAllamsetti, Harshith (Author) / Shrivastava, Aviral (Thesis advisor) / Sen, Arunabha (Committee member) / Ren, Fengbo (Committee member) / Arizona State University (Publisher)
Created2020