Matching Items (11)
Filtering by

Clear all filters

151941-Thumbnail Image.png
Description
With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate software developers to leverage these hardware techniques and improve energy efficiency of the system. To achieve this, I propose two solutions for Linux kernel: Optimal use of these architectural enhancements to achieve greater energy efficiency requires accurate modeling of processor power consumption. Though there are many models available in literature to model processor power consumption, there is a lack of such models to capture power consumption at the task-level. Task-level energy models are a requirement for an operating system (OS) to perform real-time power management as OS time multiplexes tasks to enable sharing of hardware resources. I propose a detailed design methodology for constructing an architecture agnostic task-level power model and incorporating it into a modern operating system to build an online task-level power profiler. The profiler is implemented inside the latest Linux kernel and validated for Intel Sandy Bridge processor. It has a negligible overhead of less than 1\% hardware resource consumption. The profiler power prediction was demonstrated for various application benchmarks from SPEC to PARSEC with less than 4\% error. I also demonstrate the importance of the proposed profiler for emerging architectural techniques through use case scenarios, which include heterogeneous computing and fine grained per-core DVFS. Along with architectural enhancement in general purpose processors to improve energy efficiency, hardware accelerators like Coarse Grain reconfigurable architecture (CGRA) are gaining popularity. Unlike vector processors, which rely on data parallelism, CGRA can provide greater flexibility and compiler level control making it more suitable for present SoC environment. To provide streamline development environment for CGRA, I propose a flexible framework in Linux to do design space exploration for CGRA. With accurate and flexible hardware models, fine grained integration with accurate architectural simulator, and Linux memory management and DMA support, a user can carry out limitless experiments on CGRA in full system environment.
ContributorsDesai, Digant Pareshkumar (Author) / Vrudhula, Sarma (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2013
151383-Thumbnail Image.png
Description
Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera -

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic features reliably extracted from the proposed inexpensive and portable motion capture system and classifiers that correlate torso movement to clinical measures of unimpaired and impaired. Experiment results show that the proposed sensing and analysis works reliably on measuring torso movement quality and is promising for end-point tracking. The system is currently being deployed for large-scale evaluations.
ContributorsDu, Tingfang (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2012
152173-Thumbnail Image.png
Description
Stream computing has emerged as an importantmodel of computation for embedded system applications particularly in the multimedia and network processing domains. In recent past several programming languages and embedded multi-core processors have been proposed for streaming applications. This thesis examines the execution and dynamic scheduling of stream programs on embedded

Stream computing has emerged as an importantmodel of computation for embedded system applications particularly in the multimedia and network processing domains. In recent past several programming languages and embedded multi-core processors have been proposed for streaming applications. This thesis examines the execution and dynamic scheduling of stream programs on embedded multi-core processors. The thesis addresses the problem in the context of a multi-tasking environment with a time varying allocation of processing elements for a particular streaming application. As a solution the thesis proposes a two step approach where the stream program is compiled to gather key application information, and to generate re-targetable code. A light weight dynamic scheduler incorporates the second stage of the approach. The dynamic scheduler utilizes the static information and available resources to assign or partition the application across the multi-core architecture. The objective of the dynamic scheduler is to maximize the throughput of the application, and it is sensitive to the resource (processing elements, scratch-pad memory, DMA bandwidth) constraints imposed by the target architecture. We evaluate the proposed approach by compiling and scheduling benchmark stream programs on a representative embedded multi-core processor. We present experimental results that evaluate the quality of the solutions generated by the proposed approach by comparisons with existing techniques.
ContributorsLee, Haeseung (Author) / Chatha, Karamvir (Thesis advisor) / Vrudhula, Sarma (Committee member) / Chakrabarti, Chaitali (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2013
153089-Thumbnail Image.png
Description
A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other

A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other portable computing systems, energy is a limited resource. Based on the energy characterization of a commercial widely-used smartphone, application cores are found to consume a significant part of the total energy consumption of the device. With this insight, the subsequent part of this thesis focuses on the portion of energy that is spent to move data from the memory system to the application core's internal registers. The primary motivation for this work comes from the relatively higher power consumption associated with a data movement instruction compared to that of an arithmetic instruction. The data movement energy cost is worsened esp. in a System on Chip (SoC) because the amount of data received and exchanged in a SoC based smartphone increases at an explosive rate. A detailed investigation is performed to quantify the impact of data movement

on the overall energy consumption of a smartphone device. To aid this study, microbenchmarks that generate desired data movement patterns between different levels of the memory hierarchy are designed. Energy costs of data movement are then computed by measuring the instantaneous power consumption of the device when the micro benchmarks are executed. This work makes an extensive use of hardware performance counters to validate the memory access behavior of microbenchmarks and to characterize the energy consumed in moving data. Finally, the calculated energy costs of data movement are used to characterize the portion of energy that MobileBench applications spend in moving data. The results of this study show that a significant 35% of the total device energy is spent in data movement alone. Energy is an increasingly important criteria in the context of designing architectures for future smartphones and this thesis offers insights into data movement energy consumption.
ContributorsPandiyan, Dhinakaran (Author) / Wu, Carole-Jean (Thesis advisor) / Shrivastava, Aviral (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2014
153040-Thumbnail Image.png
Description
Android has been the dominant platform in which most of the mobile development is being done. By the end of the second quarter of 2014, 84.7 percent of the entire world mobile phones market share had been captured by Android. The Android library internally uses the modified Linux kernel as

Android has been the dominant platform in which most of the mobile development is being done. By the end of the second quarter of 2014, 84.7 percent of the entire world mobile phones market share had been captured by Android. The Android library internally uses the modified Linux kernel as the part of its stack. The I/O scheduler, is a part of the Linux kernel, responsible for scheduling data requests to the internal and the external memory devices that are attached to the mobile systems.

The usage of solid state drives in the Android tablet has also seen a rise owing to its speed of operation and mechanical stability. The I/O schedulers that exist in the present Linux kernel are not better suited for handling solid state drives in particular to exploit the inherent parallelism offered by the solid state drives. The Android provides information to the Linux kernel about the processes running in the foreground and background. Based on this information the kernel decides the process scheduling and the memory management, but no such information exists for the I/O scheduling. Research shows that the resource management could be done better if the operating system is aware of the characteristics of the requester. Thus, there is a need for a better I/O scheduler that could schedule I/O operations based on the application and also exploit the parallelism in the solid state drives. The scheduler proposed through this research does that. It contains two algorithms working in unison one focusing on the solid state drives and the other on the application awareness.

The Android application context aware scheduler has the features of increasing the responsiveness of the time sensitive applications and also increases the throughput by parallel scheduling of request in the solid state drive. The suggested scheduler is tested using standard benchmarks and real-time scenarios, the results convey that our scheduler outperforms the existing default completely fair queuing scheduler of the Android.
ContributorsSivasankaran, Jeevan Prasath (Author) / Lee, Yann Hang (Thesis advisor) / Wu, Carole-Jean (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2014
153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
153829-Thumbnail Image.png
Description
The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape

The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape discrimination techniques are charge comparison method, pulse gradient method and frequency gradient method. In the work presented here, we have applied a normalized cross correlation (NCC) approach to real neutron and gamma ray pulses produced by exposing CLYC scintillators to a mixed radiation environment generated by 137Cs, 22Na, 57Co and 252Cf/AmBe at different event rates. The cross correlation analysis produces distinctive results for measured neutron pulses and gamma ray pulses when they are cross correlated with reference neutron and/or gamma templates. NCC produces good separation between neutron and gamma rays at low (< 100 kHz) to mid event rate (< 200 kHz). However, the separation disappears at high event rate (> 200 kHz) because of pileup, noise and baseline shift. This is also confirmed by observing the pulse shape discrimination (PSD) plots and figure of merit (FOM) of NCC. FOM is close to 3, which is good, for low event rate but rolls off significantly along with the increase in the event rate and reaches 1 at high event rate. Future efforts are required to reduce the noise by using better hardware system, remove pileup and detect the NCC shapes of neutron and gamma rays using advanced techniques.
ContributorsChandhran, Premkumar (Author) / Holbert, Keith E. (Thesis advisor) / Spanias, Andreas (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
155034-Thumbnail Image.png
Description
The availability of a wide range of general purpose as well as accelerator cores on

modern smartphones means that a significant number of applications can be executed

on a smartphone simultaneously, resulting in an ever increasing demand on the memory

subsystem. While the increased computation capability is intended for improving

user experience, memory requests

The availability of a wide range of general purpose as well as accelerator cores on

modern smartphones means that a significant number of applications can be executed

on a smartphone simultaneously, resulting in an ever increasing demand on the memory

subsystem. While the increased computation capability is intended for improving

user experience, memory requests from each concurrent application exhibit unique

memory access patterns as well as specific timing constraints. If not considered, this

could lead to significant memory contention and result in lowered user experience.

This work first analyzes the impact of memory degradation caused by the interference

at the memory system for a broad range of commonly-used smartphone applications.

The real system characterization results show that smartphone applications,

such as web browsing and media playback, suffer significant performance degradation.

This is caused by shared resource contention at the application processor’s last-level

cache, the communication fabric, and the main memory.

Based on the detailed characterization results, rest of this thesis focuses on the

design of an effective memory interference mitigation technique. Since web browsing,

being one of the most commonly-used smartphone applications and represents many

html-based smartphone applications, my thesis focuses on meeting the performance

requirement of a web browser on a smartphone in the presence of background processes

and co-scheduled applications. My thesis proposes a light-weight user space frequency

governor to mitigate the degradation caused by interfering applications, by predicting

the performance and power consumption of web browsing. The governor selects an

optimal energy-efficient frequency setting periodically by using the statically-trained

performance and power models with dynamically-varying architecture and system

conditions, such as the memory access intensity of background processes and/or coscheduled applications, and temperature of cores. The governor has been extensively evaluated on a Nexus 5 smartphone over a diverse range of mobile workloads. By

operating at the most energy-efficient frequency setting in the presence of interference,

energy efficiency is improved by as much as 35% and with an average of 18% compared

to the existing interactive governor, while maintaining the satisfactory performance

of web page loading under 3 seconds.
ContributorsShingari, Davesh (Author) / Wu, Carole-Jean (Thesis advisor) / Vrudhula, Sarma (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2016
171616-Thumbnail Image.png
Description
Computer vision is becoming an essential component of embedded system applications such as smartphones, wearables, autonomous systems and internet-of-things (IoT). These applications are generally deployed into environments with limited energy, memory bandwidth and computational resources. This trend is driving the development of energy-effi cient image processing solutions from sensing to

Computer vision is becoming an essential component of embedded system applications such as smartphones, wearables, autonomous systems and internet-of-things (IoT). These applications are generally deployed into environments with limited energy, memory bandwidth and computational resources. This trend is driving the development of energy-effi cient image processing solutions from sensing to computation. In this thesis, diff erent alternatives are explored to implement energy-efficient computer vision systems. First, I present a fi eld programmable gate array (FPGA) implementation of an adaptive subsampling algorithm for region-of-interest (ROI) -based object tracking. By implementing the computationally intensive sections of this algorithm on an FPGA, I aim to offl oad computing resources from energy-ineffi cient graphics processing units (GPUs) and/or general-purpose central processing units (CPUs). I also present a working system executing this algorithm in near real-time latency implemented on a standalone embedded device. Secondly, I present a neural network-based pipeline to improve the performance of event-based cameras in non-ideal optical conditions. Event-based cameras or dynamic vision sensors (DVS) are bio-inspired sensors that measure logarithmic per-pixel brightness changes in a scene. Their advantages include high dynamic range, low latency and ultra-low power when compared to standard frame-based cameras. Several tasks have been proposed to take advantage of these novel sensors but they rely on perfectly calibrated optical lenses that are in-focus. In this work I propose a methodto reconstruct events captured with an out-of-focus event-camera so they can be fed into an intensity reconstruction task. The network is trained with a dataset generated by simulating defocus blur in sequences from object tracking datasets such as LaSOT and OTB100. I also test the generalization performance of this network in scenes captured with a DAVIS event-based sensor equipped with an out-of-focus lens.
ContributorsTorres Muro, Victor Isaac (Author) / Jayasuriya, Suren (Thesis advisor) / Spanias, Andreas (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2022
158552-Thumbnail Image.png
Description
The recent increase in users of cellular networks necessitates the use of new technologies to meet this demand. Massive multiple input multiple output (MIMO) communication systems have great potential for increasing the network capacity of the emerging 5G+ cellular networks. However, leveraging the multiplexing and beamforming gains from these large-scale

The recent increase in users of cellular networks necessitates the use of new technologies to meet this demand. Massive multiple input multiple output (MIMO) communication systems have great potential for increasing the network capacity of the emerging 5G+ cellular networks. However, leveraging the multiplexing and beamforming gains from these large-scale MIMO systems requires the channel knowlege between each antenna and each user. Obtaining channel information on such a massive scale is not feasible with the current technology available due to the complexity of such large systems. Recent research shows that deep learning methods can lead to interesting gains for massive MIMO systems by mapping the channel information from the uplink frequency band to the channel information for the downlink frequency band as well as between antennas at nearby locations. This thesis presents the research to develop a deep learning based channel mapping proof-of-concept prototype.



Due to deep neural networks' need of large training sets for accurate performance, this thesis outlines the design and implementation of an autonomous channel measurement system to analyze the performance of the proposed deep learning based channel mapping concept. This system obtains channel magnitude measurements from eight antennas autonomously using a mobile robot carrying a transmitter which receives wireless commands from the central computer connected to the static receiver system. The developed autonomous channel measurement system is capable of obtaining accurate and repeatable channel magnitude measurements. It is shown that the proposed deep learning based channel mapping system accurately predicts channel information containing few multi-path effects.
ContributorsBooth, Jayden Charles (Author) / Spanias, Andreas (Thesis advisor) / Alkhateeb, Ahmed (Thesis advisor) / Ewaisha, Ahmed (Committee member) / Arizona State University (Publisher)
Created2020