Matching Items (20)
Filtering by

Clear all filters

190759-Thumbnail Image.png
Description
This thesis presents robust and novel solutions using knowledge distillation with geometric approaches and multimodal data that can address the current challenges in deep learning, providing a comprehensive understanding of the learning process involved in knowledge distillation. Deep learning has attained significant success in various applications, such as health and

This thesis presents robust and novel solutions using knowledge distillation with geometric approaches and multimodal data that can address the current challenges in deep learning, providing a comprehensive understanding of the learning process involved in knowledge distillation. Deep learning has attained significant success in various applications, such as health and wellness promotion, smart homes, and intelligent surveillance. In general, stacking more layers or increasing the number of trainable parameters causes deep networks to exhibit improved performance. However, this causes the model to become large, resulting in an additional need for computing and power resources for training, storage, and deployment. These are the core challenges in incorporating such models into small devices with limited power and computational resources. In this thesis, robust solutions aimed at addressing the aforementioned challenges are presented. These proposed methodologies and algorithmic contributions enhance the performance and efficiency of deep learning models. The thesis encompasses a comprehensive exploration of knowledge distillation, an approach that holds promise for creating compact models from high-capacity ones, while preserving their performance. This exploration covers diverse datasets, including both time series and image data, shedding light on the pivotal role of augmentation methods in knowledge distillation. The effects of these methods are rigorously examined through empirical experiments. Furthermore, the study within this thesis delves into the efficient utilization of features derived from two different teacher models, each trained on dissimilar data representations, including time-series and image data. Through these investigations, I present novel approaches to knowledge distillation, leveraging geometric techniques for the analysis of multimodal data. These solutions not only address real-world challenges but also offer valuable insights and recommendations for modeling in new applications.
ContributorsJeon, Eunsom (Author) / Turaga, Pavan (Thesis advisor) / Li, Baoxin (Committee member) / Lee, Hyunglae (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023
171844-Thumbnail Image.png
Description
Severe forms of mental illness, such as schizophrenia and bipolar disorder, are debilitating conditions that negatively impact an individual's quality of life. Additionally, they are often difficult and expensive to diagnose and manage, placing a large burden on society. Mental illness is typically diagnosed by the use of clinical interviews

Severe forms of mental illness, such as schizophrenia and bipolar disorder, are debilitating conditions that negatively impact an individual's quality of life. Additionally, they are often difficult and expensive to diagnose and manage, placing a large burden on society. Mental illness is typically diagnosed by the use of clinical interviews and a set of neuropsychiatric batteries; a key component of nearly all of these evaluations is some spoken language task. Clinicians have long used speech and language production as a proxy for neurological health, but most of these assessments are subjective in nature. Meanwhile, technological advancements in speech and natural language processing have grown exponentially over the past decade, increasing the capacity of computer models to assess particular aspects of speech and language. For this reason, many have seen an opportunity to leverage signal processing and machine learning applications to objectively assess clinical speech samples in order to automatically compute objective measures of neurological health. This document summarizes several contributions to expand upon this body of research. Mainly, there is still a large gap between the theoretical power of computational language models and their actual use in clinical applications. One of the largest concerns is the limited and inconsistent reliability of speech and language features used in models for assessing specific aspects of mental health; numerous methods may exist to measure the same or similar constructs and lead researchers to different conclusions in different studies. To address this, a novel measurement model based on a theoretical framework of speech production is used to motivate feature selection, while also performing a smoothing operation on features across several domains of interest. Then, these composite features are used to perform a much wider range of analyses than is typical of previous studies, looking at everything from diagnosis to functional competency assessments. Lastly, potential improvements to address practical implementation challenges associated with the use of speech and language technology in a real-world environment are investigated. The goal of this work is to demonstrate the ability of speech and language technology to aid clinical practitioners toward improvements in quality of life outcomes for their patients.
ContributorsVoleti, Rohit Nihar Uttam (Author) / Berisha, Visar (Thesis advisor) / Liss, Julie M (Thesis advisor) / Turaga, Pavan (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2022
161945-Thumbnail Image.png
Description
Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand,

Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand, the outer surface along with its enclosed internal volume can be taken as a three-dimensional embedding of interests. Most studies focus on the surface-based perspective by leveraging the intrinsic features on the tangent plane. But a two-dimensional model may fail to fully represent the realistic properties of shapes with both intrinsic and extrinsic properties. In this thesis, severalStochastic Partial Differential Equations (SPDEs) are thoroughly investigated and several methods are originated from these SPDEs to try to solve the problem of both two-dimensional and three-dimensional shape analyses. The unique physical meanings of these SPDEs inspired the findings of features, shape descriptors, metrics, and kernels in this series of works. Initially, the data generation of high-dimensional shapes, here, the tetrahedral meshes, is introduced. The cerebral cortex is taken as the study target and an automatic pipeline of generating the gray matter tetrahedral mesh is introduced. Then, a discretized Laplace-Beltrami operator (LBO) and a Hamiltonian operator (HO) in tetrahedral domain with Finite Element Method (FEM) are derived. Two high-dimensional shape descriptors are defined based on the solution of the heat equation and Schrödinger’s equation. Considering the fact that high-dimensional shape models usually contain massive redundancies, and the demands on effective landmarks in many applications, a Gaussian process landmarking on tetrahedral meshes is further studied. A SIWKS-based metric space is used to define a geometry-aware Gaussian process. The study of the periodic potential diffusion process further inspired the idea of a new kernel call the geometry-aware convolutional kernel. A series of Bayesian learning methods are then introduced to tackle the problem of shape retrieval and classification. Experiments of every single item are demonstrated. From the popular SPDE such as the heat equation and Schrödinger’s equation to the general potential diffusion equation and the specific periodic potential diffusion equation, it clearly shows that classical SPDEs play an important role in discovering new features, metrics, shape descriptors and kernels. I hope this thesis could be an example of using interdisciplinary knowledge to solve problems.
ContributorsFan, Yonghui (Author) / Wang, Yalin (Thesis advisor) / Lepore, Natasha (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161984-Thumbnail Image.png
Description
The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge systems are typically based on commodity general-purpose hardware such as

The rapid growth of Internet-of-things (IoT) and artificial intelligence applications have called forth a new computing paradigm--edge computing. Edge computing applications, such as video surveillance, autonomous driving, and augmented reality, are highly computationally intensive and require real-time processing. Current edge systems are typically based on commodity general-purpose hardware such as Central Processing Units (CPUs) and Graphical Processing Units (GPUs) , which are mainly designed for large, non-time-sensitive jobs in the cloud and do not match the needs of the edge workloads. Also, these systems are usually power hungry and are not suitable for resource-constrained edge deployments. Such application-hardware mismatch calls forth a new computing backbone to support the high-bandwidth, low-latency, and energy-efficient requirements. Also, the new system should be able to support a variety of edge applications with different characteristics. This thesis addresses the above challenges by studying the use of Field Programmable Gate Array (FPGA) -based computing systems for accelerating the edge workloads, from three critical angles. First, it investigates the feasibility of FPGAs for edge computing, in comparison to conventional CPUs and GPUs. Second, it studies the acceleration of common algorithmic characteristics, identified as loop patterns, using FPGAs, and develops a benchmark tool for analyzing the performance of these patterns on different accelerators. Third, it designs a new edge computing platform using multiple clustered FPGAs to provide high-bandwidth and low-latency acceleration of convolutional neural networks (CNNs) widely used in edge applications. Finally, it studies the acceleration of the emerging neural networks, randomly-wired neural networks, on the multi-FPGA platform. The experimental results from this work show that the new generation of workloads requires rethinking the current edge-computing architecture. First, through the acceleration of common loops, it demonstrates that FPGAs can outperform GPUs in specific loops types up to 14 times. Second, it shows the linear scalability of multi-FPGA platforms in accelerating neural networks. Third, it demonstrates the superiority of the new scheduler to optimally place randomly-wired neural networks on multi-FPGA platforms with 81.1 times better throughput than the available scheduling mechanisms.
ContributorsBiookaghazadeh, Saman (Author) / Zhao, Ming (Thesis advisor) / Ren, Fengbo (Thesis advisor) / Li, Baoxin (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2021
161975-Thumbnail Image.png
Description
Uncertainty is intrinsic in Cyber-Physical Systems since they interact with human and work with both analog and digital worlds. Since even minute deviation from the real values can make catastrophe in a safety-critical application, considering uncertainties in CPS behavior is essential. On the other side, time is a

Uncertainty is intrinsic in Cyber-Physical Systems since they interact with human and work with both analog and digital worlds. Since even minute deviation from the real values can make catastrophe in a safety-critical application, considering uncertainties in CPS behavior is essential. On the other side, time is a foundational aspect of Cyber-Physical Systems (CPS). Correct timing of system events is critical to optimize responsiveness to the environment, in terms of timeliness, accuracy, and precision in the knowledge, measurement, prediction, and control of CPS behavior. In order to design a more resilient and reliable CPS, first and foremost, there should be a way to specify the timing constraints that a constructed Cyber-Physical System must meet with considering existing uncertainties. Only then, we can seek systematic approaches to check if all timing constraints are being met, and develop correct-by-construction methodologies. In this regard, Timestamp Temporal Logic (TTL) is developed to specify the timing constraints on a distributed CPS. By TTL designers can specify the timing requirements that a CPS must satisfy in a succinct and intuitive manner and express the tolerable error as a part of the language. The proposed deduction system on TTL (TTL reasoning system) gives the ability to check the consistency among expresses system specifications and simplify them to be implemented on FPGA for run-time verification. Regarding CPS run-time verification, Timestamp-based Monitoring Approach(TMA) has been designed that can hook up to a CPS and take its timing specifications in TTL and verify if the timing constraints are being met with considering existing uncertainties in the system. TMA does not need to compute whether the constraint is being met at each and every instance of time but it re-evaluates constraint only when there is an event that can affect the outcome. This enables it to perform online timing monitoring of CPS for less computation and resources. Furthermore, the minimum design parameters of the timing CPS that are required to enable testing the timing of CPS are defined in this dissertation
ContributorsMehrabian, Mohammadreza (Author) / Shrivastava, Aviral (Thesis advisor) / Ren, Fengbo (Committee member) / Sarjoughian, Hessam (Committee member) / Derler, Patricia (Committee member) / Arizona State University (Publisher)
Created2021
161997-Thumbnail Image.png
Description
Many real-world engineering problems require simulations to evaluate the design objectives and constraints. Often, due to the complexity of the system model, simulations can be prohibitive in terms of computation time. One approach to overcome this issue is to construct a surrogate model, which approximates the original model. The focus

Many real-world engineering problems require simulations to evaluate the design objectives and constraints. Often, due to the complexity of the system model, simulations can be prohibitive in terms of computation time. One approach to overcome this issue is to construct a surrogate model, which approximates the original model. The focus of this work is on the data-driven surrogate models, in which empirical approximations of the output are performed given the input parameters. Recently neural networks (NN) have re-emerged as a popular method for constructing data-driven surrogate models. Although, NNs have achieved excellent accuracy and are widely used, they pose their own challenges. This work addresses two common challenges, the need for: (1) hardware acceleration and (2) uncertainty quantification (UQ) in the presence of input variability. The high demand in the inference phase of deep NNs in cloud servers/edge devices calls for the design of low power custom hardware accelerators. The first part of this work describes the design of an energy-efficient long short-term memory (LSTM) accelerator. The overarching goal is to aggressively reduce the power consumption and area of the LSTM components using approximate computing, and then use architectural level techniques to boost the performance. The proposed design is synthesized and placed and routed as an application-specific integrated circuit (ASIC). The results demonstrate that this accelerator is 1.2X and 3.6X more energy-efficient and area-efficient than the baseline LSTM. In the second part of this work, a robust framework is developed based on an alternate data-driven surrogate model referred to as polynomial chaos expansion (PCE) for addressing UQ. In contrast to many existing approaches, no assumptions are made on the elements of the function space and UQ is a function of the expansion coefficients. Moreover, the sensitivity of the output with respect to any subset of the input variables can be computed analytically by post-processing the PCE coefficients. This provides a systematic and incremental method to pruning or changing the order of the model. This framework is evaluated on several real-world applications from different domains and is extended for classification tasks as well.
ContributorsAzari, Elham (Author) / Vrudhula, Sarma (Thesis advisor) / Fainekos, Georgios (Committee member) / Ren, Fengbo (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
168306-Thumbnail Image.png
Description
Coarse-Grained Reconfigurable Arrays (CGRAs) are emerging accelerators that promise low-power acceleration of compute-intensive loops in applications. The acceleration achieved by CGRA relies on the efficient mapping of the compute-intensive loops by the CGRA compiler onto the CGRA. The CGRA mapping problem, being NP-complete, is performed in a two-step process, scheduling,

Coarse-Grained Reconfigurable Arrays (CGRAs) are emerging accelerators that promise low-power acceleration of compute-intensive loops in applications. The acceleration achieved by CGRA relies on the efficient mapping of the compute-intensive loops by the CGRA compiler onto the CGRA. The CGRA mapping problem, being NP-complete, is performed in a two-step process, scheduling, and mapping. The scheduling algorithm allocates timeslots to the nodes of the DFG, and the mapping algorithm maps the scheduled nodes onto the PEs of the CGRA. On a mapping failure, the initiation interval (II) is increased, and a new schedule is obtained for the increased II. Most previous mapping techniques use the Iterative Modulo Scheduling algorithm (IMS) to find a schedule for a given II. Since IMS generates a resource-constrained ASAP (as-soon-as-possible) scheduling, even with increased II, it tends to generate a similar schedule that is not mappable and does not explore the schedule space effectively. The problems encountered by IMS-based scheduling algorithms are explored and an improved randomized scheduling algorithm for scheduling of the application loop to be accelerated is proposed. When encountering a mapping failure for a given schedule, existing mapping algorithms either exit and retry the mapping anew, or recursively remove the previously mapped node to find a valid mapping (backtrack).Abandoning the mapping is extreme, but even backtracking may not be the best choice, since the root of the problem may not be the previous node. The challenges in existing algorithms are systematically analyzed and a failure-aware mapping algorithm is presented. The loops in general-purpose applications are often complicated loops, i.e., loops with perfect and imperfect nests and loops with nested if-then-else's (conditionals). The existing hardware-software solutions to execute branches and conditions are inefficient. A co-design approach that efficiently executes complicated loops on CGRA is proposed. The compiler transforms complex loops, maps them to the CGRA, and lays them out in the memory in a specific manner, such that the hardware can fetch and execute the instructions from the right path at runtime. Finally, a CGRA compilation simulator open-source framework is presented. This open-source CGRA simulation framework is based on LLVM and gem5 to extract the loop, map them onto the CGRA architecture, and execute them as a co-processor to an ARM CPU.
ContributorsBalasubramanian, Mahesh (Author) / Shrivastava, Aviral (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Ren, Fengbo (Committee member) / Pozzi, Laura (Committee member) / Arizona State University (Publisher)
Created2021
193045-Thumbnail Image.png
Description
This thesis presents novel software/hardware co-design methodologies aimed at accelerating sparse linear algebra applications within the realm of High-Performance Computing (HPC). The motivation stems from the limitations of conventional CPU- and GPU-based solutions for sparse linear algebra, which are hindered by fixed hardware architecture and memory hierarchy, frequent off-chip memory

This thesis presents novel software/hardware co-design methodologies aimed at accelerating sparse linear algebra applications within the realm of High-Performance Computing (HPC). The motivation stems from the limitations of conventional CPU- and GPU-based solutions for sparse linear algebra, which are hindered by fixed hardware architecture and memory hierarchy, frequent off-chip memory access, and high energy consumption. In response, this work explores the deployment of Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) to overcome these challenges through their customized nature, offering performance and energy efficiency gains. The scope of the thesis is divided into three main parts: firstly, it introduces a framework that combines an FPGA computational kernel with a novel scheduling algorithm running on a host processor for accelerating the supernodal multifrontal algorithm for sparse Cholesky factorization. This approach minimizes off-chip memory access and on-chip memory requirements by efficiently managing data dependencies and enhancing data locality. Secondly, it presents FSpGEMM, an OpenCL-based framework for accelerating general sparse matrix-matrix multiplication on FPGAs. FSpGEMM exploits a new compressed sparse vector format (CSV) and a custom buffering scheme tailored to Gustavson's algorithm, significantly improving computational performance by optimizing memory access patterns. Additionally, a row reordering technique is utilized to increase the data reuse enabled by the CSV format. Lastly, the thesis proposes an ASIC design for Sparse Tensor Core, which utilizes a Hardware Merge Sorter to increase parallelism in processing units without compromising operating frequency, offering a high-speed solution for sparse linear algebra operations. In summary, the thesis addresses the challenges of implementing sparse linear algebra algorithms on FPGAs and ASICs, such as the complexity of data dependencies and the need for efficient memory management. By proposing solutions that enhance computational performance, reduce energy consumption, and improve the usability of FPGAs and ASICs in HPC infrastructures, this work contributes to computational science, offering a pathway toward more efficient and sustainable computing for complex, data-intensive applications.
ContributorsBank Tavakoli, Erfan (Author) / Ren, Fengbo (Thesis advisor) / Arizona State University (Publisher)
Created2024
191751-Thumbnail Image.png
Description
Data-intensive systems such as big data and large machine learning (ML) systems experience serious scalability challenges due to the ever-increasing data demand from ML and analytics applications and the resource fragmentation caused by conventional monolithic server architecture. Memory and storage disaggregation emerges as a pivotal technology to address these challenges

Data-intensive systems such as big data and large machine learning (ML) systems experience serious scalability challenges due to the ever-increasing data demand from ML and analytics applications and the resource fragmentation caused by conventional monolithic server architecture. Memory and storage disaggregation emerges as a pivotal technology to address these challenges by decoupling memory and storage resources from individual servers and managing and provisioning them to applications as a shared resource pool. This dissertation investigates several important aspects of memory and storage disaggregation and proposes novel solutions to support data-intensive applications.First, caching is a fundamental way to utilize disaggregated storage, but building a large disaggregated cache is challenging because the commonly-used fix-sized cache block allocation scheme is unable to provide good cache performance with low memory overhead for diverse cloud workloads with vastly different I/O patterns. The dissertation proposes a novel adaptive cache block allocation approach that dynamically adjusts cache block sizes based on changing I/O patterns. This approach significantly improves I/O performance while reducing memory usage, outperforming traditional fixed-size cache systems in diverse cloud workloads. Evaluation shows that it improves read latency by 20% and write latency by 9%. It also reduces the amount of I/O traffic to cloud block storage by up to 74% while achieving up to 41% memory savings with only 2 ms. Second, large ML applications such as large language model (LLM) inference are memory demanding, but to support them using disaggregated memory brings challenges to memory management since disaggregated memory has higher memory access latency compared to local memory. The dissertation proposes latency-aware memory aggregation which cautiously distributes memory accesses to minimize the latency gap between local and disaggregated memory. It also proposes NUMA-aligned tensor parallelism to further improve the computing efficiency. With these optimizations, LLM inference achieves substantial speedups. For example, first token latency improves by 61%, and end-to-end latency improves by 43% for a LLM inference task which uses a model of 66 billion parameters when the batch size is 8. Finally, to address the cost, power consumption, and volatility of DRAM, the dissertation proposes to incorporate flash memory into memory pools within the disaggregation framework. By establishing a tiered memory architecture which combines fast-tier local DRAM with slow-tier DRAM and flash memory in the memory pool and effectively migrates data based on hotness across memory tiers, this approach not only reduces expenses but also maintains the overall performance and scalability of data-intensive systems. For example, with 50% saving in memory cost, the performance degradation of training ResNet50 on ImageNet dataset is only 2.68%. Together, these contributions systematically optimize the use of memory and storage disaggregation to deliver more efficient, scalable, and cost-effective systems for supporting the data explosion in today’s and future computing systems.
ContributorsYang, Qirui (Author) / Zhao, Ming (Thesis advisor) / Shrivastava, Aviral (Committee member) / Ren, Fengbo (Committee member) / Zou, Jia (Committee member) / Arizona State University (Publisher)
Created2024
157060-Thumbnail Image.png
Description
Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with

Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with other vehicles and pedestrians. Yet, there is no agreed-upon approach on how and in what detail those systems should be tested. Different organizations have different testing approaches, and one common approach is to combine simulation-based testing with real-world driving.

One of the expectations from fully-automated vehicles is never to cause an accident. However, an automated vehicle may not be able to avoid all collisions, e.g., the collisions caused by other road occupants. Hence, it is important for the system designers to understand the boundary case scenarios where an autonomous vehicle can no longer avoid a collision. Besides safety, there are other expectations from automated vehicles such as comfortable driving and minimal fuel consumption. All safety and functional expectations from an automated driving system should be captured with a set of system requirements. It is challenging to create requirements that are unambiguous and usable for the design, testing, and evaluation of automated driving systems. Another challenge is to define useful metrics for assessing the testing quality because in general, it is impossible to test every possible scenario.

The goal of this dissertation is to formalize the theory for testing automated vehicles. Various methods for automatic test generation for automated-driving systems in simulation environments are presented and compared. The contributions presented in this dissertation include (i) new metrics that can be used to discover the boundary cases between safe and unsafe driving conditions, (ii) a new approach that combines combinatorial testing and optimization-guided test generation methods, (iii) approaches that utilize global optimization methods and random exploration to generate critical vehicle and pedestrian trajectories for testing purposes, (iv) a publicly-available simulation-based automated vehicle testing framework that enables application of the existing testing approaches in the literature, including the new approaches presented in this dissertation.
ContributorsTuncali, Cumhur Erkan (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Kapinski, James (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2019