Matching Items (3)
Filtering by

Clear all filters

151818-Thumbnail Image.png
Description
Understanding agricultural land use requires the integration of natural factors, such as climate and nutrients, as well as human factors, such as agricultural intensification. Employing an agroecological framework, I use the Perry Mesa landscape, located in central Arizona, as a case study to explore the intersection of these factors to

Understanding agricultural land use requires the integration of natural factors, such as climate and nutrients, as well as human factors, such as agricultural intensification. Employing an agroecological framework, I use the Perry Mesa landscape, located in central Arizona, as a case study to explore the intersection of these factors to investigate prehistoric agriculture from A.D. 1275-1450. Ancient Perry Mesa farmers used a runoff agricultural strategy and constructed extensive alignments, or terraces, on gentle hillslopes to slow and capture nutrient rich surface runoff generated from intense rainfall. I investigate how the construction of agricultural terraces altered key parameters (water and nutrients) necessary for successful agriculture in this arid region. Building upon past work focused on agricultural terraces in general, I gathered empirical data pertaining to nutrient renewal and water retention from one ancient runoff field. I developed a long-term model of maize growth and soil nutrient dynamics parameterized using nutrient analyses of runoff collected from the sample prehistoric field. This model resulted in an estimate of ideal field use and fallow periods for maintaining long-term soil fertility under different climatic regimes. The results of the model were integrated with estimates of prehistoric population distribution and geographical characterizations of the arable lands to evaluate the places and periods when sufficient arable land was available for the type of cropping and fallowing systems suggested by the model (given the known climatic trends and land use requirements). Results indicate that not only do dry climatic periods put stress on crops due to reduced precipitation but that a reduction in expected runoff events results in a reduction in the amount of nutrient renewal due to fewer runoff events. This reduction lengthens estimated fallow cycles, and probably would have increased the amount of land necessary to maintain sustainable agricultural production. While the overall Perry Mesa area was not limited in terms of arable land, this analysis demonstrates the likely presence of arable land pressures in the immediate vicinity of some communities. Anthropological understandings of agricultural land use combined with ecological tools for investigating nutrient dynamics provides a comprehensive understanding of ancient land use in arid regions.
ContributorsKruse-Peeples, Melissa R (Author) / Spielmann, Katherine A. (Thesis advisor) / Abbott, David R. (Committee member) / Hall, Sharon J. (Committee member) / Kintigh, Keith W. (Committee member) / Arizona State University (Publisher)
Created2013
153125-Thumbnail Image.png
Description
This study evaluates five different hypotheses potentially accounting for the prehistoric movement of vesicular basalt during the Hohokam occupation of the Salt-Gila Basin (ca. A.D. 700-1450): 1) direct procurement; 2) direct exchange; 3) down-the-line exchange; 4) market exchange; and 5) elite-controlled exchange. The plausibility of each hypothesis is assessed by

This study evaluates five different hypotheses potentially accounting for the prehistoric movement of vesicular basalt during the Hohokam occupation of the Salt-Gila Basin (ca. A.D. 700-1450): 1) direct procurement; 2) direct exchange; 3) down-the-line exchange; 4) market exchange; and 5) elite-controlled exchange. The plausibility of each hypothesis is assessed by examining the relative frequency of different vesicular basalt source types at sites as related to the geographic distance from their source; intra-site variance in vesicular basalt source type diversity; inter-site variance in vesicular basalt source type diversity; and temporal specificity and continuity in source preference. The study sample is comprised of 484 vesicular basalt artifacts recovered from nine Hohokam sites: Casa Grande, Gila Crossing, the Hospital Site, La Plaza, Las Colinas, Los Hornos, Lower Santan, Pueblo Grande, and Upper Santan. Geographic provenance data for artifacts are generated by comparing their chemical composition to a geochemical reference database composed of more than 700 vesicular basalt raw material samples from 17 different source areas in the Salt-Gila Basin. Geochemical data for both artifact and raw material samples were collected using a portable X-ray fluorescence spectrometer and a newly developed sampling procedure that provides an efficient, reliable, and nondestructive means of analysis.

The results of the hypothesis testing found that direct procurement is a possible material provisioning practice for perhaps only a small number of households in the Salt-Gila Basin; specifically those located less than 10 km from a vesicular basalt outcrop. Direct exchange is also an unlikely explanation, though it cannot be rejected outright. The other exchange hypotheses, down-the-line, market, and elite-controlled exchange, as defined in this study, are all rejected as possible explanations. From these results, a new model of Hohokam vesicular basalt provisioning practices is developed for future testing. This model posits that vesicular basalt groundstone tools were produced by specialists in a handful of locations during both the Preclassic and Classic periods, and that finished tools were acquired through workshop procurement or local distributers. The implications of these findings for understanding the organization of Hohokam domestic and political economies are also discussed.
ContributorsFertelmes, Craig M (Author) / Abbott, David R. (Thesis advisor) / Simon, Arleyn W (Thesis advisor) / Darling, J Andrew (Committee member) / Arizona State University (Publisher)
Created2014
136715-Thumbnail Image.png
Description
Microarthropods play important roles in the decomposition process of the detrital food web, where they break down organic matter and return nutrients to the soil. However, only a small percentage of the belowground microarthropod population has been studied or even discovered, leading to a decrease in the knowledge of all

Microarthropods play important roles in the decomposition process of the detrital food web, where they break down organic matter and return nutrients to the soil. However, only a small percentage of the belowground microarthropod population has been studied or even discovered, leading to a decrease in the knowledge of all of the processes carried out by these organisms and their importance to the soil. This is because microarthropod extraction methods are not 100% effective at collecting specimens. This study aimed to find an ideal quantitative procedure to better record the number of microarthropods existing in the soil and to determine if a seasonal variation exists that effects the success of extraction. Two extraction methods, including dynamic extraction and heptane flotation extraction, were compared across two seasons, a dry season (June) and a wet season (September). Average biomasses and average richness were calculated for four different functional groups, including Prostigmata, Mesostigmata, Cryptostigmata, and Collembola, across the two seasons, and statistical analysis was performed to determine if any differences that existed were statistically significant. Results indicate that the dynamic extraction method was significantly more effective for the collection of microarthropods during the wet season, and the heptane extraction method was significantly more effective during the dry season. In addition, the heptane procedure recovered samples of higher average richness than the dynamic method during both seasons. The heptane procedure works best for extraction during the dry season because it is able to collect organisms that entered into an ametabolic anhydrobiotic state to escape desiccation. These organisms form a protective lipid layer around their exoskeletons to retain water, and the non-polar exoskeletons display a chemical affinity to the heptane fluid, allowing for collection out of the soil and into the heptane layer. Despite these results, no one method is entirely superior to the other, and the most efficacious procedure depends on the researcher's aim of study.
ContributorsAntol, Rachel Lynn (Author) / Sabo, John L. (Thesis director) / Hall, Sharon (Committee member) / Wyant, Karl A. (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12