Matching Items (2)
Filtering by

Clear all filters

150288-Thumbnail Image.png
Description
In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human

In an effort to begin validating the large number of discovered candidate biomarkers, proteomics is beginning to shift from shotgun proteomic experiments towards targeted proteomic approaches that provide solutions to automation and economic concerns. Such approaches to validate biomarkers necessitate the mass spectrometric analysis of hundreds to thousands of human samples. As this takes place, a serendipitous opportunity has become evident. By the virtue that as one narrows the focus towards "single" protein targets (instead of entire proteomes) using pan-antibody-based enrichment techniques, a discovery science has emerged, so to speak. This is due to the largely unknown context in which "single" proteins exist in blood (i.e. polymorphisms, transcript variants, and posttranslational modifications) and hence, targeted proteomics has applications for established biomarkers. Furthermore, besides protein heterogeneity accounting for interferences with conventional immunometric platforms, it is becoming evident that this formerly hidden dimension of structural information also contains rich-pathobiological information. Consequently, targeted proteomics studies that aim to ascertain a protein's genuine presentation within disease- stratified populations and serve as a stepping-stone within a biomarker translational pipeline are of clinical interest. Roughly 128 million Americans are pre-diabetic, diabetic, and/or have kidney disease and public and private spending for treating these diseases is in the hundreds of billions of dollars. In an effort to create new solutions for the early detection and management of these conditions, described herein is the design, development, and translation of mass spectrometric immunoassays targeted towards diabetes and kidney disease. Population proteomics experiments were performed for the following clinically relevant proteins: insulin, C-peptide, RANTES, and parathyroid hormone. At least thirty-eight protein isoforms were detected. Besides the numerous disease correlations confronted within the disease-stratified cohorts, certain isoforms also appeared to be causally related to the underlying pathophysiology and/or have therapeutic implications. Technical advancements include multiplexed isoform quantification as well a "dual- extraction" methodology for eliminating non-specific proteins while simultaneously validating isoforms. Industrial efforts towards widespread clinical adoption are also described. Consequently, this work lays a foundation for the translation of mass spectrometric immunoassays into the clinical arena and simultaneously presents the most recent advancements concerning the mass spectrometric immunoassay approach.
ContributorsOran, Paul (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Ros, Alexandra (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
154539-Thumbnail Image.png
Description
Cell heterogeneity is widely present in the biological world and exists even in an isogenic population. Resolving the protein heterogeneity at the single cell level is of enormous biological and clinical relevance. However, single cell protein analysis has proven to be challenging due to extremely low amount of protein in

Cell heterogeneity is widely present in the biological world and exists even in an isogenic population. Resolving the protein heterogeneity at the single cell level is of enormous biological and clinical relevance. However, single cell protein analysis has proven to be challenging due to extremely low amount of protein in a single cell and the huge complexity of proteome. This requires appropriate sampling and sensitive detection techniques. Here, a new approach, microfluidics combined with MALDI-TOF mass spectrometry was brought forward, for the analysis of proteins in single cells. The detection sensitivity of peptides as low as 300 molecules and of proteins as low as 10^6 molecules has been demonstrated. Furthermore, an immunoassay was successfully integrated in the microfluidic device for capturing the proteins of interest and further identifying them by subsequent enzymatic digestion. Moreover, an improved microfluidic platform was designed with separate chambers and valves, allowing the absolute quantification by employing iTRAQ tags or an isotopically labeled peptide. The study was further extended to analyze a protein in MCF-7 cell lysate. The approach capable of identifying and quantifying protein molecules in MCF-7 cells is promising for future proteomic studies at the single cell level.
ContributorsYang, Mian (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Nelson, Randall (Committee member) / Arizona State University (Publisher)
Created2016