Matching Items (3)

Filtering by

Clear all filters

148005-Thumbnail Image.png

Enzyme-Induced Carbonate Precipitation Utilizing Fresh Urine and Calcium-Rich Zeolites

Description

Enzyme-induced carbonate precipitation (EICP) is a biocementation technique that produces comparatively fewer carbon dioxide emissions than traditional cementation. However, the use of synthetic reagents for EICP is costly, and the process produces an ammonium byproduct which is a harmful pollutant.

Enzyme-induced carbonate precipitation (EICP) is a biocementation technique that produces comparatively fewer carbon dioxide emissions than traditional cementation. However, the use of synthetic reagents for EICP is costly, and the process produces an ammonium byproduct which is a harmful pollutant. This study utilizes fresh urine as a source of urea and calcium-rich zeolites as an ammonium adsorbent and a source of calcium ions for the EICP cementation technique. Batch hydrolysis and adsorption experiments were conducted to determine the effects of zeolite type, zeolite form, and solution composition on ammonium adsorption and calcium release. Cementation experiments were then conducted to determine the effects of different hydrolysis and adsorption times on ammonium adsorption and calcium carbonate precipitation. The results showed that calcium-rich chabazite could be used as a source of calcium ions and as an effective adsorbent of ammonium for EICP. Additionally, synthetic, fresh urine and real, fresh urine had comparable ammonium adsorption and calcium release trends. Finally, inclusion of a pre-hydrolysis step reduced the ammonium adsorption and calcium release, but longer adsorption times lead to calcium carbonate precipitation outside of the sand column, which is an undesirable outcome for soil biocementation; even with this limitation, the calcium carbonate content of sand columns ranged from 0.48% to 0.92%, which signifies the potential of the proposed process for cementation, given a higher initial concentration of urea.

Contributors

Created

Date Created
2021-05

157686-Thumbnail Image.png

Effect of anion exchange resin properties on the adsorption of PFAAs and NOM

Description

Humans are exposed up to thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, but most of the research and action has been directed towards only two PFAS compounds. These two compounds are part of a subcategory of PFAS

Humans are exposed up to thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, but most of the research and action has been directed towards only two PFAS compounds. These two compounds are part of a subcategory of PFAS called perfluoroalkyl acids (PFAAs). It has been a challenge for the environmental community to mitigate risks caused by PFAAs due to their high persistence and lack of effective measures to remove them from the environment, especially in heavily impacted areas like fire-training sites. The goal of this work was to further answer some questions regarding the removal of PFAAs in the environment by looking at anion exchange resin characteristics and presence of a competing compound, natural organic matter (NOM), in the adsorption of environmentally relevant PFAS compounds including the two often monitored 8-carbon chain PFAAs. Two different resins were tested with two forms of counterions, in both groundwater and NOM impacted groundwater. Resin polymer matrix was the most important property in the adsorption of PFAAs, the two resins used A520E and A860 had similar properties except for their matrices polystyrene (PS) and polyacrylic (PA), respectively. The PS base is most effective at PFAAs adsorption, while the PA is most effective at NOM adsorption. The change in the counterion did not negatively affect the adsorption of PFAAs and is, therefore, a viable alternative for future studies that include regeneration and destruction of PFAAs. The presence of NOM also did not significantly affect the adsorption of PFAAs in the PS resin A520E, although for some PFAAs compounds it did affect adsorption for the PA resin. Ultimately, PS macroporous resins with a strong Type I or Type II base work best in PFAAs removal.

Contributors

Agent

Created

Date Created
2019

157581-Thumbnail Image.png

Geochemical analysis of the leachate generated after zero valent metals addition to municipal solid waste

Description

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals,

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.

Contributors

Agent

Created

Date Created
2019