Matching Items (4)
Filtering by

Clear all filters

151349-Thumbnail Image.png
Description
This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website Panoramio.com through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and related metadata of their daily activities from the website OpenStreetMap.org; and finally (3) preschool children's daily activities and interactions tagged with time and geographical location were collected with a novel TabletPC-based behavioral coding system. The proposed methodology is applied to these data to (1) automatically recommend optimal multi-day and multi-stay travel itineraries for travelers based on discovered attractions from geo-tagged photos, (2) automatically detect movement types of unknown moving objects from GPS trajectories, and (3) explore dynamic social and socio-spatial patterns of preschool children's behavior from both geographic and social perspectives.
ContributorsLi, Xun (Author) / Anselin, Luc (Thesis advisor) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Rey, Sergio (Committee member) / Griffin, William (Committee member) / Arizona State University (Publisher)
Created2012
156060-Thumbnail Image.png
Description
As urban populations become increasingly dense, massive amounts of new 'big' data that characterize human activity are being made available and may be characterized as having a large volume of observations, being produced in real-time or near real-time, and including a diverse variety of information. In particular, spatial interaction (SI)

As urban populations become increasingly dense, massive amounts of new 'big' data that characterize human activity are being made available and may be characterized as having a large volume of observations, being produced in real-time or near real-time, and including a diverse variety of information. In particular, spatial interaction (SI) data - a collection of human interactions across a set of origins and destination locations - present unique challenges for distilling big data into insight. Therefore, this dissertation identifies some of the potential and pitfalls associated with new sources of big SI data. It also evaluates methods for modeling SI to investigate the relationships that drive SI processes in order to focus on human behavior rather than data description.

A critical review of the existing SI modeling paradigms is first presented, which also highlights features of big data that are particular to SI data. Next, a simulation experiment is carried out to evaluate three different statistical modeling frameworks for SI data that are supported by different underlying conceptual frameworks. Then, two approaches are taken to identify the potential and pitfalls associated with two newer sources of data from New York City - bike-share cycling trips and taxi trips. The first approach builds a model of commuting behavior using a traditional census data set and then compares the results for the same model when it is applied to these newer data sources. The second approach examines how the increased temporal resolution of big SI data may be incorporated into SI models.

Several important results are obtained through this research. First, it is demonstrated that different SI models account for different types of spatial effects and that the Competing Destination framework seems to be the most robust for capturing spatial structure effects. Second, newer sources of big SI data are shown to be very useful for complimenting traditional sources of data, though they are not sufficient substitutions. Finally, it is demonstrated that the increased temporal resolution of new data sources may usher in a new era of SI modeling that allows us to better understand the dynamics of human behavior.
ContributorsOshan, Taylor Matthew (Author) / Fotheringham, A. S. (Thesis advisor) / Farmer, Carson J.Q. (Committee member) / Rey, Sergio S.J. (Committee member) / Nelson, Trisalyn (Committee member) / Arizona State University (Publisher)
Created2017
156347-Thumbnail Image.png
Description

Factors that explain human mobility and active transportation include built environment and infrastructure features, though few studies incorporate specific geographic detail into examinations of mobility. Little is understood, for example, about the specific paths people take in urban areas or the influence of neighborhoods on their activity. Detailed analysis of

Factors that explain human mobility and active transportation include built environment and infrastructure features, though few studies incorporate specific geographic detail into examinations of mobility. Little is understood, for example, about the specific paths people take in urban areas or the influence of neighborhoods on their activity. Detailed analysis of human activity has been limited by the sampling strategies employed by conventional data sources. New crowdsourced datasets, or data gathered from smartphone applications, present an opportunity to examine factors that influence human activity in ways that have not been possible before; they typically contain more detail and are gathered more frequently than conventional sources. Questions remain, however, about the utility and representativeness of crowdsourced data. The overarching aim of this dissertation research is to identify how crowdsourced data can be used to better understand human mobility. Bicycling activity is used as a case study to examine human mobility because smartphone apps aimed at collecting bicycle routes are readily available and bicycling is under studied in comparison to other modes. The research herein aimed to contribute to the knowledge base on crowdsourced data and human mobility in three ways. First, the research examines how conventional (e.g., counts, travel surveys) and crowdsourced data correspond in representing bicycling activity. Results identified where the data correspond and differ significantly, which has implications for using crowdsourced data for planning and policy decisions. Second, the research examined the factors that influence cycling activity generated by smartphone cycling apps. The best predictors of activity were median weekly rent, percentage of residential land, and the number of people using two or more modes to commute in an area. Finally, the third part of the dissertation seeks to understand the impact of bicycle lanes and bicycle ridership on residential housing prices. Results confirmed that bicycle lanes in the neighborhood of a home positively influence sale prices, though ridership was marginally related to house price. This research demonstrates that knowledge obtained through crowdsourced data informs us about smaller geographic areas and details on where people bicycle, who uses bicycles, and the impact of the built environment on bicycling activity.

ContributorsConrow, Lindsey (Author) / Wentz, Elizabeth (Thesis advisor) / Nelson, Trisalyn (Committee member) / Mooney, Sian (Committee member) / Pettit, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
136493-Thumbnail Image.png
Description
In the mid-1970s, social scientists began observing marital dyad conversations in laboratory settings with the hope of determining which observable features best discriminate couples who report being either satisfied or unsatisfied with their relationship. These studies continued until about a decade ago when, in addition to increasing laboratory costs slowing

In the mid-1970s, social scientists began observing marital dyad conversations in laboratory settings with the hope of determining which observable features best discriminate couples who report being either satisfied or unsatisfied with their relationship. These studies continued until about a decade ago when, in addition to increasing laboratory costs slowing the pace of new data collection, researchers realized that distressed couples were easier to quantitatively describe than nondistressed couples. Specifically, distressed couples exhibit rigid patterns of negativity whereas couples who report being maritally satisfied show minimal rigidity in the opposite direction \u2014 positivity. This was, and is, a theoretical dilemma: how can clinicians understand and eventually modify distressed relationships when the behavior of satisfied couples are less patterned, less predictable and more diverse? A recent study by Griffin and Li (2015), using contemporary machine learning techniques, reanalyzed existing marital interaction data and found that, contrary to expectation and existing theory, nondistressed couples should be further subdivided into two groups \u2014 those who are predictably positive or neutral and those who interact using diverse and varying levels of positive and negative behaviors. The latter group is the focus of this thesis. Using these recent findings as discussion points, I review how the unexpected behaviors in this novel group can maintain and possibly perpetuate marital satisfaction.
Created2015-05