Matching Items (3)
Filtering by

Clear all filters

137487-Thumbnail Image.png
Description
The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.
ContributorsWorger, Danielle Marie (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Wirthlin, J. Robert (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
157656-Thumbnail Image.png
Description
To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience

To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience using sociotechnical systems theory and, further, investigates the critical role of institutions for infrastructure resilience using a thorough analysis of water and energy systems in Arizona.

Infrastructure is not static, but dynamic. Institutions play a significant role in designing, building, maintaining, and upgrading dynamic infrastructures. Institutions create the appearance of infrastructure stability while dynamically changing infrastructures over time, which is resilience work. The resilience work of different institutions and organizations sustains, recovers, adapts, reconfigures, and transforms the physical structure on short, medium, and long temporal scales.

To better understand and analyze the dynamics of sociotechnical infrastructure resilience, this research examines several case studies. The first is the social and institutional arrangements for the allocation of resources from Hoover Dam. This research uses an institutional analysis framework and draws on the institutional landscape of water and energy systems in Arizona. In particular, this research illustrates how institutions contribute to differing resilience work at temporal scales while fabricating three types of institutional threads: lateral, vertical, and longitudinal threads.

This research also highlights the importance of institutional interdependence as a critical challenge for improving infrastructure resilience. Institutional changes in one system can disrupt other systems’ performance. The research examines this through case studies that explore how changes to water governance impact the energy system in Arizona. Groundwater regulations affect the operation of thermoelectric power plants which withdraw groundwater for cooling. Generation turbines, droughts, and water governance are all intertwined via institutions in Arizona.

This research, finally, expands and applies the interdependence perspective to a case study of forest management in Arizona. In a nutshell, the perilous combination of chronic droughts and the engineering resilience perspective jeopardizes urban water and energy systems. Wildfires caused by dense forests have legitimized an institutional transition, from thickening forests to thinning trees in Arizona.
ContributorsGim, Changdeok (Author) / Miller, Clark A. (Thesis advisor) / Maynard, Andrew D. (Committee member) / Hirt, Paul W. (Committee member) / Arizona State University (Publisher)
Created2019
151408-Thumbnail Image.png
Description
A fundamental question in the field of strategic management is how companies achieve sustainable competitive advantage. The Market-Oriented Theory (MOT), the Resource-Based Model and their complementary perspective try to answer this fundamental question. The primary goal of this study is to lay the groundwork for Standardized Strategic Assessment Framework (SSAF).

A fundamental question in the field of strategic management is how companies achieve sustainable competitive advantage. The Market-Oriented Theory (MOT), the Resource-Based Model and their complementary perspective try to answer this fundamental question. The primary goal of this study is to lay the groundwork for Standardized Strategic Assessment Framework (SSAF). The SSAF, which consists of a set of six models, aids in the evaluation and assessment of current and future strategic positioning of Small and Medium Enterprises (SMEs). The SSAF was visualized by IDEF0, a systems engineering tool. In addition, a secondary goal is the development of models to explain relationships between a company's resources, capabilities, and competitive strategy within the SSAF. Six models are considered within the SSAF, including R&D; activities model, product innovation model, process innovation model, operational excellence model, and export performance model. Only one of them, R&D; activities model was explained in-debt and developed a model by transformational system. In the R&D; activities model, the following question drives the investigation. Do company R&D; inputs (tangible, intangible and human resources) affect R&D; activities (basic research, applied research, and experimental development)? Based on this research question, eight hypotheses were extrapolated regarding R&D; activities model. In order to analyze these hypotheses, survey questions were developed for the R&D; model. A survey was sent to academic staff and industry experts for a survey instrument validation. Based on the survey instrument validation, content validity has been established and questions, format, and scales have been improved for future research application.
ContributorsDemir, Mustafa (Author) / Waissi, Gary (Thesis advisor) / Humble, Jane (Committee member) / Polesky, Gerald (Committee member) / Arizona State University (Publisher)
Created2012