Matching Items (3)
Filtering by

Clear all filters

136385-Thumbnail Image.png
Description
The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an

The Metal Semiconductor Field Effect Transistor (MESFET) has high potential to enter analog and RF applications due to their high breakdown voltage and switching frequency characteristics. These MESFET devices could allow for high voltage analog circuits to be integrated with low voltage digital circuits on a single chip in an extremely cost effective way. Higher integration leads to electronics with increased functionality and a smaller finished product. The MESFETs are designed in-house by the research group led by Dr. Trevor Thornton. The layouts are then sent to multi-project wafer (MPW) integrated circuit foundry companies, such as the Metal Oxide Semiconductor Implementation Service (MOSIS) to be fabricated. Once returned, the electrical characteristics of the devices are measured. The MESFET has been implemented in various applications by the research group, including the low dropout linear regulator (LDO) and RF power amplifier. An advantage of the MESFET is that it can function in extreme environments such as space, allowing for complex electrical systems to continue functioning properly where traditional transistors would fail.
ContributorsKam, Jason (Author) / Thornton, Trevor (Thesis director) / Goryll, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
137186-Thumbnail Image.png
Description
MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's

MESFETs are used in high frequency applications and are typically made from GaAs. Dr. Trevor Thornton designed a silicon-on-insulator MESFET \u2014 a cheaper alternative with competitive capabilities. This paper concerns the characterization and modeling of this device to exhibit its marketability as a CMOS integrated transistor. Overviews of the MESFET's history and DLTS (deep level transient spectroscopy) are offered.
ContributorsTerrell, Catherine Elaine (Author) / Thornton, Trevor (Thesis director) / Young, Alexander (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
149494-Thumbnail Image.png
Description
The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the

The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the process flow or adding additional steps, which in turn, leads to an increase in fabrication costs. Si-MESFETs (silicon-metal-semiconductor-field-effect-transistors) from Arizona State University (ASU) on the other hand, have an inherent high voltage capability and can be added to any silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) CMOS process free of cost. This has been proved at five different commercial foundries on technologies ranging from 0.5 to 0.15 μm. Another critical issue facing CMOS processes on insulated substrates is the scaling of the thin silicon channel. Consequently, the future direction of SOI/SOS CMOS transistors may trend away from partially depleted (PD) transistors and towards fully depleted (FD) devices. FD-CMOS are already being implemented in multiple applications due to their very low power capability. Since the FD-CMOS market only figures to grow, it is appropriate that MESFETs also be developed for these processes. The beginning of this thesis will focus on the device aspects of both PD and FD-MESFETs including their layout structure, DC and RF characteristics, and breakdown voltage. The second half will then shift the focus towards implementing both types of MESFETs in an analog circuit application. Aside from their high breakdown ability, MESFETs also feature depletion mode operation, easy to adjust but well controlled threshold voltages, and fT's up to 45 GHz. Those unique characteristics can allow certain designs that were previously difficult to implement or prohibitively expensive using conventional technologies to now be achieved. One such application which benefits is low dropout regulators (LDO). By utilizing an n-channel MESFET as the pass transistor, a LDO featuring very low dropout voltage, fast transient response, and stable operation can be achieved without an external capacitance. With the focus of this thesis being MESFET based LDOs, the device discussion will be mostly tailored towards optimally designing MESFETs for this particular application.
ContributorsLepkowski, William (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2010