Matching Items (18)
Filtering by

Clear all filters

151964-Thumbnail Image.png
Description
5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses

5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout the brain, primarily in regions involved in reward circuitry, including the prefrontal cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. Using animal models, we tested our hypotheses that 5-HT2ARs in the medial (m) PFC mediate the incentive motivational effects of cocaine and cocaine-paired cues; 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and functional neuronal activation (i.e, Fos protein); and 5-HT2CRs in the BlA mediate the incentive motivational effects of cocaine-paired cues and anxiety-like behavior, while 5-HT2CRs in the CeA mediate the incentive motivational effects of cocaine. In chapter 2, we infused M100907, a selective 5-HT2AR antagonist, directly into the mPFC and examined its effects on reinstatement of cocaine-seeking behavior. We found that M100907 in the mPFC dose- dependently attenuated cue-primed reinstatement, without affecting cocaine-primed reinstatement, cue-primed reinstatement of sucrose-seeking behavior, or locomotor activity. In chapter 3, we used subthreshold doses of M100907 and MK212, a 5-HT2CR agonist, to investigate whether these compounds interact to attenuate cocaine hyperlocomotion and Fos protein expression. Only the drug combination attenuated cocaine hyperlocomotion and cocaine-induced Fos expression in the CPu, but had no effect on spontaneous locomotion. Finally, in chapter 4 we investigated the effects of a 5- HT2CR agonist in the BlA and CeA on cocaine-seeking behavior and anxiety-like behavior. We found that CP809101, a selective 5-HT2CR agonist, infused into the BlA increased anxiety-like behavior on the elevated plus maze (EPM), but failed to alter cocaine-seeking behavior. CP809101 infused into the CeA attenuated cocaine-primed reinstatement and this effect was blocked by co-administration of a 5-HT2CR antagonist. Together, these results suggest that 5-HT2ARs in the mPFC are involved in cue-primed reinstatement, 5-HT2A and 5-HT2CRs may interact in the nigrostriatal pathway to attenuate cocaine hyperlocomotion and Fos expression, and 5-HT2CRs are involved in anxiety-like behavior in the BlA and cocaine-primed reinstatement in the CeA. Our findings add to the literature on the localization of 5-HT2AR antagonist and 5-HT2CR agonist effects, and suggest a potential treatment mechanism via concurrent 5-HT2AR antagonism and 5-HT2CR agonism.
ContributorsPockros, Lara Ann (Author) / Neisewander, Janet L (Thesis advisor) / Olive, Michael F (Committee member) / Conrad, Cheryl D. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
149824-Thumbnail Image.png
Description
Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light.

Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light. This study examined whether rats acquire nicotine self-administration in the absence of these facilitators. A new mathematical modeling procedure was used to define the criterion for acquisition and to determine dose-dependent differences in rate and asymptote levels of intake. Rats were trained across 20 daily 2-h sessions occurring 6 days/week in chambers equipped with active and inactive levers. Each active lever press resulted in nicotine reinforcement (0, 0.015, 0.03, 0.06 mg/kg, IV) and retraction of both levers for a 20-s time out, whereas inactive lever presses had no consequences. Acquisition was defined by the best fit of a logistic function (i.e., S-shaped) versus a constant function (i.e., flat line) for reinforcers obtained across sessions using a corrected Akaike information criterion (AICc) as a model selection tool. The results showed an inverted-U shaped function for dose in relation to the percentage of animals that acquired nicotine self-administration, with 46% acquiring at 0.015 mg/kg, 73% at 0.03 mg/kg, and 58% at 0.06 mg/kg. All saline rats failed to acquire as expected. For rats that acquired nicotine self-administration, multiple model comparisons demonstrated that the asymptote (highest number of reinforcers/session) and half learning point (h; session during which half the assymptote had been achieved) were justified as free parameters of the reinforcers/session function, indicating that these parameters vary with nicotine dose. Asymptote exhibited an inverted U-shaped function across doses and half learning point exhibited a negative relationship to dose (i.e., the higher the dose the fewer sessions to reach h). These findings suggest that some rats acquire nicotine self-administration without using procedures that confound measures of acquisition rate. Furthermore, the modeling approach provides a new way of defining acquisition of drug self-administration that takes advantage of using all data generated from individual subjects and is less arbitrary than some criteria that are currently used.
ContributorsCole, Natalie (Author) / Neisewander, Janet L (Thesis advisor) / Sanabria, Federico (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Olive, Michael F (Committee member) / Arizona State University (Publisher)
Created2011
150179-Thumbnail Image.png
Description
Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and in females alone ovarian hormones have been found to alter spatial memory via modulating brain microstructure and function in many of the same brain areas affected by aging. The research in this dissertation has implications that promote an understanding of the effects of cognitive practice on aging memory, why males and females respond differently to cognitive practice, and the parameters and mechanisms underlying estrogen's effects on memory. This body of work suggests that cognitive practice can enhance memory when aged and that estrogen is a probable candidate facilitating the observed differences in the effects of cognitive practice depending on sex. This enhancement in cognitive practice effects via estrogen is supported by data demonstrating that estrogen enhances spatial memory and hippocampal synaptic plasticity. The estrogen-facilitated memory enhancements and alterations in hippocampal synaptic plasticity are at least partially facilitated via enhancements in cholinergic signaling from the basal forebrain. Finally, age, dose, and type of estrogen utilized are important factors to consider when evaluating estrogen's effects on memory and its underlying mechanisms, since age alters the responsiveness to estrogen treatment and the dose of estrogen needed, and small alterations in the molecular structure of estrogen can have a profound impact on estrogen's efficacy on memory. Collectively, this dissertation elucidates many parameters that dictate the outcome, and even the direction, of the effects that cognitive practice and estrogens have on cognition during aging. Indeed, many parameters including the ones described here are important considerations when designing future putative behavioral interventions, behavioral therapies, and hormone therapies. Ideally, the parameters described here will be used to help design the next generation of interventions, therapies, and nootropic agents that will allow individuals to maintain their cognitive capacity when aged, above and beyond what is currently possible, thus enacting lasting improvement in women's health and public health in general.
ContributorsTalboom, Joshua S (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2011
150589-Thumbnail Image.png
Description
The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to examine brain activation in response to cocaine cues in this model apart from activation produced by test novelty

The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to examine brain activation in response to cocaine cues in this model apart from activation produced by test novelty using a novel cue control. Rats trained to self-administer cocaine paired with either an oscillating light or tone cue underwent daily extinction training and were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either their assigned cocaine-paired cue or the alternate, novel cue. Additional controls received saline infusions and cue presentations yoked to a cocaine-trained rat. Brains were harvested for Fos immunohistochemistry immediately after the 90-min reinstatement test. Surprisingly, conditioned and novel cues both reinstated responding to a similar degree; however magnitude of reinstatement did vary by cue modality with the greatest reinstatement to the light cues. In most brain regions, Fos expression was enhanced in rats with a history of cocaine training regardless of cue type with the exception of the Cg1 region of the anterior cingulate cortex, which was sensitive to test cue modality. Also Fos expression within the dorsomedial caudate-putamen was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel light and tone, but not a familiar cue. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a history of operant-delivered drug or a natural reinforcer. Furthermore, similar brain circuits as those involved in cocaine-seeking behavior are activated by novel cues, suggesting converging processes exist to drive conditioned and novel reinforcement seeking.
ContributorsBastle, Ryan (Author) / Neisewander, Janet L (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Arizona State University (Publisher)
Created2012
156139-Thumbnail Image.png
Description
Exome sequencing was used to identify novel variants linked to amyotrophic lateral sclerosis (ALS), in a family without mutations in genes previously linked to ALS. A F115C mutation in the gene MATR3 was identified, and further examination of other ALS kindreds identified an additional three mutations in MATR3; S85C, P154S

Exome sequencing was used to identify novel variants linked to amyotrophic lateral sclerosis (ALS), in a family without mutations in genes previously linked to ALS. A F115C mutation in the gene MATR3 was identified, and further examination of other ALS kindreds identified an additional three mutations in MATR3; S85C, P154S and T622A. Matrin 3 is an RNA/DNA binding protein as well as part of the nuclear matrix. Matrin 3 interacts with TDP-43, a protein that is both mutated in some forms of ALS, and found in pathological inclusions in most ALS patients. Matrin 3 pathology, including mislocalization and rare cytoplasmic inclusions, was identified in spinal cord tissue from a patient carrying a mutation in Matrin 3, as well as sporadic ALS patients. In an effort to determine the mechanism of Matrin 3 linked ALS, the protein interactome of wild-type and ALS-linked MATR3 mutations was examined. Immunoprecipitation followed by mass spectrometry experiments were performed using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify ALS-causing mutations in the gene MATR3, as well as a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.
ContributorsBoehringer, Ashley (Author) / Bowser, Robert (Thesis advisor) / Liss, Julie (Committee member) / Jensen, Kendall (Committee member) / Ladha, Shafeeq (Committee member) / Arizona State University (Publisher)
Created2018
156177-Thumbnail Image.png
Description
The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second language speech perception. The purpose of this study was to investigate the role of M1 associated with speech motor centers in processing acoustic inputs in the native (L1) and second language (L2), using repetitive Transcranial Magnetic Stimulation (rTMS) to selectively alter neural activity in M1. Thirty-six healthy English/Spanish bilingual subjects participated in the experiment. The performance on a listening word-to-picture matching task was measured before and after real- and sham-rTMS to the orbicularis oris (lip muscle) associated M1. Vowel Space Area (VSA) obtained from recordings of participants reading a passage in L2 before and after real-rTMS, was calculated to determine its utility as an rTMS aftereffect measure. There was high variability in the aftereffect of the rTMS protocol to the lip muscle among the participants. Approximately 50% of participants showed an inhibitory effect of rTMS, evidenced by smaller motor evoked potentials (MEPs) area, whereas the other 50% had a facilitatory effect, with larger MEPs. This suggests that rTMS has a complex influence on M1 excitability, and relying on grand-average results can obscure important individual differences in rTMS physiological and functional outcomes. Evidence of motor support to word recognition in the L2 was found. Participants showing an inhibitory aftereffect of rTMS on M1 produced slower and less accurate responses in the L2 task, whereas those showing a facilitatory aftereffect of rTMS on M1 produced more accurate responses in L2. In contrast, no effect of rTMS was found on the L1, where accuracy and speed were very similar after sham- and real-rTMS. The L2 VSA measure was indicative of the aftereffect of rTMS to M1 associated with speech production, supporting its utility as an rTMS aftereffect measure. This result revealed an interesting and novel relation between cerebral motor cortex activation and speech measures.
ContributorsBarragan, Beatriz (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Rogalsky, Corianne (Committee member) / Restrepo, Adelaida (Committee member) / Arizona State University (Publisher)
Created2018
157041-Thumbnail Image.png
Description
Nicotine self-administration is associated with decreased expression of the glial glutamate transporter 1 (GLT-1) and the cystine-glutamate exchange protein xCT in the nucleus accumbens core (NAcore). N-acetylcysteine (NAC), which is an antioxidant, anti-inflammatory, and glutamatergic agent, restores these proteins associated with increased relapse vulnerability. However, the specific molecular mechanisms driving

Nicotine self-administration is associated with decreased expression of the glial glutamate transporter 1 (GLT-1) and the cystine-glutamate exchange protein xCT in the nucleus accumbens core (NAcore). N-acetylcysteine (NAC), which is an antioxidant, anti-inflammatory, and glutamatergic agent, restores these proteins associated with increased relapse vulnerability. However, the specific molecular mechanisms driving NAC inhibitory effects on cue-induced nicotine reinstatement are unknown. Thus, the present study assessed NAC’s effects on cue-induced nicotine reinstatement are dependent on NAcore GLT-1 expression. Here, rats were treated with NAC in combination with intra-NAcore vivo-morpholinos to examine the role of GLT-1 in NAC-mediated inhibition of cue-induced nicotine seeking. Subchronic NAC treatment attenuated cue-induced nicotine seeking in male rats and an antisense vivo-morpholino (AS) designed to selectively suppress GLT-1 expression in the NAcore blocked this effect. NAC treatment was also associated with an inhibition of pro-inflammatory tumor necrosis factor alpha (TNFα) expression in the NAcore. As well, GLT-1 AS markedly increased expression of CD40, a known marker of pro-inflammatory M1 activation of microglia and macrophages. To further examine whether NAC-induced decreases in nicotine seeking involve suppression of TNFα, we manipulated a downstream mediator of this pathway, nuclear factor kappa B (NF-kB). Considering the putative role of NF-κB in learning, memory, and synaptic plasticity, separate experiments were performed where rats were treated with herpes simplex virus (HSV) vectors designed to increase (HSV-IKKca) or decrease (HSV-IKKdn) NF-κB signaling through interactions with IκB Kinase (IKK). The goal was to examine the role of NF-κB signaling in mediating nicotine seeking behavior and if NF-κB signaling regulates GLT-1 expression. HSV-IKKdn alone and in combination with NAC inhibited cue-induced nicotine reinstatement, while HSV-IKKca blocked the attenuating effect of NAC on reinstatement. Interestingly, both HSV-IKKdn and HSV-IKKca, regardless of NAC treatment, inhibited GLT-1 expression. Taken together, these results suggest that while GLT-1 may be a conserved neurobiological substrate underlying relapse vulnerability across drugs of abuse, immunomodulatory mechanisms may regulate drug-induced alterations in glutamatergic plasticity that mediate cue-induced drug-seeking behavior through GLT-1-independent mechanisms.
ContributorsNamba, Mark Douglas (Author) / Gipson-Reichardt, Cassandra D (Thesis advisor) / Conrad, Cheryl D. (Committee member) / Neisewander, Janet L (Committee member) / Arizona State University (Publisher)
Created2019
137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
154197-Thumbnail Image.png
Description
Studies in Second Language Acquisition and Neurolinguistics have argued that adult learners when dealing with certain phonological features of L2, such as segmental and suprasegmental ones, face problems of articulatory placement (Esling, 2006; Abercrombie, 1967) and somatosensory stimulation (Guenther, Ghosh, & Tourville, 2006; Waldron, 2010). These studies have argued that

Studies in Second Language Acquisition and Neurolinguistics have argued that adult learners when dealing with certain phonological features of L2, such as segmental and suprasegmental ones, face problems of articulatory placement (Esling, 2006; Abercrombie, 1967) and somatosensory stimulation (Guenther, Ghosh, & Tourville, 2006; Waldron, 2010). These studies have argued that adult phonological acquisition is a complex matter that needs to be informed by a specialized sensorimotor theory of speech acquisition. They further suggested that traditional pronunciation pedagogy needs to be enhanced by an approach to learning offering learners fundamental and practical sensorimotor tools to advance the quality of L2 speech acquisition.



This foundational study designs a sensorimotor approach to pronunciation pedagogy and tests its effect on the L2 speech of five adult (late) learners of American English. Throughout an eight week classroom experiment, participants from different first language backgrounds received instruction on Articulatory Settings (Honickman, 1964) and the sensorimotor mechanism of speech acquisition (Waldron 2010; Guenther et al., 2006). In addition, they attended five adapted lessons of the Feldenkrais technique (Feldenkrais, 1972) designed to develop sensorimotor awareness of the vocal apparatus and improve the quality of L2 speech movement. I hypothesize that such sensorimotor learning triggers overall positive changes in the way L2 learners deal with speech articulators for L2 and that over time they develop better pronunciation.

After approximately eight hours of intervention, analysis of results shows participants’ improvement in speech rate, degree of accentedness, and speaking confidence, but mixed changes in word intelligibility and vowel space area. Albeit not statistically significant (p >.05), these results suggest that such a sensorimotor approach to L2 phonological acquisition warrants further consideration and investigation for use in the L2 classroom.
ContributorsLima, J. Alberto S., Jr (Author) / Pruitt, Kathryn (Thesis advisor) / Gelderen, Elly van (Thesis advisor) / Liss, Julie (Committee member) / James, Mark (Committee member) / Arizona State University (Publisher)
Created2015
155273-Thumbnail Image.png
Description
Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage to the brain. Previous neuroimaging studies have indicated the superior

Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage to the brain. Previous neuroimaging studies have indicated the superior temporal sulcus (STS) as the center for AV integration, while others suggest inferior frontal and motor regions. However, few studies have analyzed the effect of stroke or other brain damage on multisensory integration in humans. The present study examines the effect of lesion location on auditory and AV speech perception through behavioral and structural imaging methodologies in 41 left-hemisphere participants with chronic focal cerebral damage. Participants completed two behavioral tasks of speech perception: an auditory speech perception task and a classic McGurk paradigm measuring congruent (auditory and visual stimuli match) and incongruent (auditory and visual stimuli do not match, creating a “fused” percept of a novel stimulus) AV speech perception. Overall, participants performed well above chance on both tasks. Voxel-based lesion symptom mapping (VLSM) across all 41 participants identified several regions as critical for speech perception depending on trial type. Heschl’s gyrus and the supramarginal gyrus were identified as critical for auditory speech perception, the basal ganglia was critical for speech perception in AV congruent trials, and the middle temporal gyrus/STS were critical in AV incongruent trials. VLSM analyses of the AV incongruent trials were used to further clarify the origin of “errors”, i.e. lack of fusion. Auditory capture (auditory stimulus) responses were attributed to visual processing deficits caused by lesions in the posterior temporal lobe, whereas visual capture (visual stimulus) responses were attributed to lesions in the anterior temporal cortex, including the temporal pole, which is widely considered to be an amodal semantic hub. The implication of anterior temporal regions in AV integration is novel and warrants further study. The behavioral and VLSM results are discussed in relation to previous neuroimaging and case-study evidence; broadly, our findings coincide with previous work indicating that multisensory superior temporal cortex, not frontal motor circuits, are critical for AV integration.
ContributorsCai, Julia (Author) / Rogalsky, Corianne (Thesis advisor) / Azuma, Tamiko (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2017