Matching Items (22)
Filtering by

Clear all filters

150222-Thumbnail Image.png
Description
An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine the role of this area in estimating limb position based on visual and somatic signals (proprioceptive, efference copy). When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons were modulated by visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level. The second part of this dissertation focused on the consequences of misestimation of limb position for movement production. It is well known that limb movements are inherently variable. This variability could be the result of noise arising at one or more stages of movement production. Here we used biomechanical modeling and simulation techniques to characterize movement variability resulting from noise in estimating limb position ('sensing noise') and in planning required movement vectors ('planning noise'), and compared that to the variability expected due to noise in movement execution. We found that the effects of sensing and planning related noise on movement variability were dependent upon both the planned movement direction and the initial configuration of the arm and were different in many respects from the effects of execution noise.
ContributorsShi, Ying (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / He, Jiping (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2011
151742-Thumbnail Image.png
Description
This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained to control the cursor using abstract motor imagery. A third control group practices moving the cursor using an arm and finger on a touch screen. We hypothesized that if motor learning transfer is related to the use of shared neural structures then the embodied motor imagery group would show more learning transfer than the abstract imaging group. If, on the other hand, motor learning transfer results from more general cognitive processes, then the abstract motor imagery group should also demonstrate motor learning transfer to the manual performance of the same task. Our findings support that motor learning transfer is due to the use of shared neural structures between imaging and motor execution of a task. The abstract group showed no motor learning transfer despite being better at EEG-BCI control than the embodied group. The fact that more participants were able to learn EEG-BCI control using abstract imagery suggests that abstract imagery may be more suitable for EEG-BCIs for some disabilities, while embodied imagery may be more suitable for others. In Part 2, EEG data collected in the above experiment was used to train an artificial neural network (ANN) to map EEG signals to machine commands. We found that our open-source ANN using spectrograms generated from SFFTs is fundamentally different and in some ways superior to Emotiv's proprietary method. Our use of novel combinations of existing technologies along with abstract and embodied imagery facilitates adaptive customization of EEG-BCI control to meet needs of individual users.
Contributorsda Silva, Flavio J. K (Author) / Mcbeath, Michael K (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Presson, Clark (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
152013-Thumbnail Image.png
Description
Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present

Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present study investigated the effects of arm configuration on the interaction between planning noise and execution noise. Subjects performed reaching movements to three targets located in a frontal plane. At the starting position, subjects matched one of two desired arm configuration 'templates' namely "adducted" and "abducted". These arm configurations were obtained by rotations along the shoulder-hand axis, thereby maintaining endpoint position. Visual feedback of the hand was varied from trial to trial, thereby increasing uncertainty in movement planning and execution. It was hypothesized that 1) pattern of endpoint variability would be dependent on arm configuration and 2) that these differences would be most apparent in conditions without visual feedback. It was found that there were differences in endpoint variability between arm configurations in both visual conditions, but these differences were much larger when visual feedback was withheld. The overall results suggest that patterns of endpoint variability are highly dependent on arm configuration, particularly in the absence of visual feedback. This suggests that in the presence of vision, movement planning in 3D space is performed using coordinates that are largely arm configuration independent (i.e. extrinsic coordinates). In contrast, in the absence of vision, movement planning in 3D space reflects a substantial contribution of intrinsic coordinates.
ContributorsLakshmi Narayanan, Kishor (Author) / Buneo, Christopher (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
150499-Thumbnail Image.png
Description
The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain

The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain unclear. Thus several studies have been performed to elucidate the role and influence of sensorimotor noise on movement variability. The first study focuses on sensory integration and movement planning across the reaching workspace. An experiment was designed to examine the relative contributions of vision and proprioception to movement planning by measuring the rotation of the initial movement direction induced by a perturbation of the visual feedback prior to movement onset. The results suggest that contribution of vision was relatively consistent across the evaluated workspace depths; however, the influence of vision differed between the vertical and later axes indicate that additional factors beyond vision and proprioception influence movement planning of 3-dimensional movements. If the first study investigated the role of noise in sensorimotor integration, the second and third studies investigate relative influence of sensorimotor noise on reaching performance. Specifically, they evaluate how the characteristics of neural processing that underlie movement planning and execution manifest in movement variability during natural reaching. Subjects performed reaching movements with and without visual feedback throughout the movement and the patterns of endpoint variability were compared across movement directions. The results of these studies suggest a primary role of visual feedback noise in shaping patterns of variability and in determining the relative influence of planning and execution related noise sources. The final work considers a computational approach to characterizing how sensorimotor processes interact to shape movement variability. A model of multi-modal feedback control was developed to simulate the interaction of planning and execution noise on reaching variability. The model predictions suggest that anisotropic properties of feedback noise significantly affect the relative influence of planning and execution noise on patterns of reaching variability.
ContributorsApker, Gregory Allen (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
171522-Thumbnail Image.png
Description
The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory

The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory system in controlling the lower and upper extremities; however, little is known about the contributions of the orofacial somatosensory system. The overall goal of this study was to determine factors that influence the sensitivity of the orofacial somatosensory system. To measure the somatosensory system's sensitivity, transcutaneous electrical current stimulation was applied to the skin overlaying the trigeminal nerve on the lower portion of the face. After applying stimulation, participants' sensitivity was determined through the detection of the electrical stimuli (i.e., perceptual threshold). The data analysis focused on the impact of (1) stimulation parameters, (2) electrode placement, and (3) motor tasks on the perceptual threshold. The results showed that, as expected, stimulation parameters (such as stimulation frequency and duration) influenced perceptual thresholds. However, electrode placement (left vs. right side of the face) and motor tasks (lip contraction vs. rest) did not influence perceptual thresholds. Overall, these findings have important implications for designing and developing therapeutic neuromodulation techniques based on trigeminal nerve stimulation.
ContributorsKhoury, Maya Elie (Author) / Daliri, Ayoub (Thesis advisor) / Patten, Jake (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2022
171445-Thumbnail Image.png
Description
Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally

Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally significant changes in individuals with severe post- stroke aphasia remains a key challenge for the rehabilitation community. This dissertation aimed to evaluate the efficacy of Startle Adjuvant Rehabilitation Therapy (START), a tele-enabled, low- cost treatment, to improve quality of life and speech in individuals with severe-to-moderate stroke. START is the exposure to startling acoustic stimuli during practice of motor tasks in individuals with stroke. START increases the speed and intensity of practice in severely impaired post-stroke reaching, with START eliciting muscle activity 2-3 times higher than maximum voluntary contraction. Voluntary reaching distance, onset, and final accuracy increased after a session of START, suggesting a rehabilitative effect. However, START has not been evaluated during impaired speech. The objective of this study is to determine if impaired speech can be elicited by startling acoustic stimuli, and if three days of START training can enhance clinical measures of moderate to severe post-stroke aphasia and apraxia of speech. This dissertation evaluates START in 42 individuals with post-stroke speech impairment via telehealth in a Phase 0 clinical trial. Results suggest that impaired speech can be elicited by startling acoustic stimuli and that START benefits individuals with severe-to-moderate post-stroke impairments in both linguistic and motor speech domains. This fills an important gap in aphasia care, as many speech therapies remain ineffective and financially inaccessible for patients with severe deficits. START is effective, remotely delivered, and may likely serve as an affordable adjuvant to traditional therapy for those that have poor access to quality care.
ContributorsSwann, Zoe Elisabeth (Author) / Honeycutt, Claire F (Thesis advisor) / Daliri, Ayoub (Committee member) / Rogalsky, Corianne (Committee member) / Liss, Julie (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2022
168487-Thumbnail Image.png
Description
Information processing in the brain is mediated by network interactions between anatomically distant (centimeters apart) regions of cortex and network action is fundamental to human behavior. Disruptive activity of these networks may allow a variety of diseases to develop. Degradation or loss of network function in the brain can affect

Information processing in the brain is mediated by network interactions between anatomically distant (centimeters apart) regions of cortex and network action is fundamental to human behavior. Disruptive activity of these networks may allow a variety of diseases to develop. Degradation or loss of network function in the brain can affect many aspects of the human experience; motor disorder, language difficulties, memory loss, mood swings, and more. The cortico-basal ganglia loop is a system of networks in the brain between the cortex, basal ganglia, the thalamus, and back to the cortex. It is not one singular circuit, but rather a series of parallel circuits that are relevant towards motor output, motor planning, and motivation and reward. Studying the relationship between basal ganglia neurons and cortical local field potentials may lead to insights about neurodegenerative diseases and how these diseases change the cortico-basal ganglia circuit. Speech and language are uniquely human and require the coactivation of several brain regions. The various aspects of language are spread over the temporal lobe and parts of the occipital, parietal, and frontal lobe. However, the core network for speech production involves collaboration between phonologic retrieval (encoding ideas into syllabic representations) from Wernicke’s area, and phonemic encoding (translating syllables into motor articulations) from Broca’s area. Studying the coactivation of these brain regions during a repetitive speech production task may lead to a greater understanding of their electrophysiological functional connectivity. The primary purpose of the work presented in this document is to validate the use of subdural microelectrodes in electrophysiological functional connectivity research as these devices best match the spatial and temporal scales of brain activity. Neuron populations in the cortex are organized into functional units called cortical columns. These cortical columns operate on the sub-millisecond temporal and millimeter spatial scale. The study of brain networks, both in healthy and unwell individuals, may reveal new methodologies of treatment or management for disease and injury, as well as contribute to our scientific understanding of how the brain works.
ContributorsO'Neill, Kevin John (Author) / Greger, Bradley (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Papandreou-Suppapola, Antonia (Committee member) / Kleim, Jeffery (Committee member) / Arizona State University (Publisher)
Created2021
168768-Thumbnail Image.png
Description
Diffusion Tensor Imaging may be used to understand brain differences within PD. Within the last couple of decades there has been an explosion of learning and development in neuroimaging techniques. Today, it is possible to monitor and track where a brain is needing blood during a specific task without much

Diffusion Tensor Imaging may be used to understand brain differences within PD. Within the last couple of decades there has been an explosion of learning and development in neuroimaging techniques. Today, it is possible to monitor and track where a brain is needing blood during a specific task without much delay such as when using functional Magnetic Resonance Imaging (fMRI). It is also possible to track and visualize where and at which orientation water molecules in the brain are moving like in Diffusion Tensor Imaging (DTI). Data on certain diseases such as Parkinson’s Disease (PD) has grown considerably, and it is now known that people with PD can be assessed with cognitive tests in combination with neuroimaging to diagnose whether people with PD have cognitive decline in addition to any motor ability decline. The Montreal Cognitive Assessment (MoCA), Modified Semantic Fluency Test (MSF) and Mini-Mental State Exam (MMSE) are the primary tools and are often combined with fMRI or DTI for diagnosing if people with PD also have a mild cognitive impairment (MCI). The current thesis explored a group of cohort of PD patients and classified based on their MoCA, MSF, and Lexical Fluency (LF) scores. The results indicate specific brain differences in whether PD patients were low or high scorers on LF and MoCA scores. The current study’s findings adds to the existing literature that DTI may be more sensitive in detecting differences based on clinical scores.
ContributorsAndrade, Eric (Author) / Oforoi, Edward (Thesis advisor) / Zhou, Yi (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2022