Matching Items (9)
Filtering by

Clear all filters

152132-Thumbnail Image.png
Description
The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there

The history of outdoor water use in the Phoenix, Arizona metropolitan area has given rise to a general landscape aesthetic and pattern of residential irrigation that seem in discord with the natural desert environment. While xeric landscaping that incorporates native desert ecology has potential for reducing urban irrigation demand, there are societal and environmental factors that make mesic landscaping, including shade trees and grass lawns, a common choice for residential yards. In either case, there is potential for water savings through irrigation schedules based on fluxes affecting soil moisture in the active plant rooting zone. In this thesis, a point-scale model of soil moisture dynamics was applied to two urban sites in the Phoenix area: one with xeric landscaping, and one with mesic. The model was calibrated to observed soil moisture data from irrigated and non-irrigated sensors, with local daily precipitation and potential evapotranspiration records as model forcing. Simulations were then conducted to investigate effects of irrigation scheduling, plant stress parameters, and precipitation variability on soil moisture dynamics, water balance partitioning, and plant water stress. Results indicated a substantial difference in soil water storage capacity at the two sites, which affected sensitivity to irrigation scenarios. Seasonal variation was critical in avoiding unproductive water losses at the xeric site, and allowed for small water savings at the mesic site by maintaining mild levels of plant stress. The model was also used to determine minimum annual irrigation required to achieve specified levels of plant stress at each site using long-term meteorological records. While the xeric site showed greater potential for water savings, a bimodal schedule consisting of low winter and summer irrigation was identified as a means to conserve water at both sites, with moderate levels of plant water stress. For lower stress levels, potential water savings were found by fixing irrigation depth and seasonally varying the irrigation interval, consistent with municipal recommendations in the Phoenix metropolitan area. These results provide a deeper understanding of the ecohydrologic differences between the two types of landscape treatments, and can assist water and landscape managers in identifying opportunities for water savings in desert urban areas.
ContributorsVolo, Thomas J (Author) / Vivoni, Enrique R (Thesis advisor) / Ruddell, Benjamin L (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2013
152387-Thumbnail Image.png
Description
Land-atmosphere interactions of semiarid shrublands have garnered significant scientific interest. One of the main tools used for this research is the eddy covariance (EC) method, which measures fluxes of energy, water vapor, and carbon dioxide. EC fluxes can be difficult to interpret due to complexities within the EC footprint (i.e.

Land-atmosphere interactions of semiarid shrublands have garnered significant scientific interest. One of the main tools used for this research is the eddy covariance (EC) method, which measures fluxes of energy, water vapor, and carbon dioxide. EC fluxes can be difficult to interpret due to complexities within the EC footprint (i.e. the surface conditions that contribute to the flux measurements). Most EC studies use a small number of soil probes to estimate the land surface states underlying the measured fluxes, which likely undersamples the footprint-scale conditions, especially in semiarid shrublands which are characterized by high spatial and temporal variability. In this study, I installed a dense network of soil moisture and temperature probe profiles in the footprint region of an EC tower at two semiarid sites: a woody savanna in southern Arizona and a mixed shrubland in southern New Mexico. For data from May to September 2013, I link land surface states to EC fluxes through daily footprints estimated using an analytical model. Novel approaches are utilized to partition evapotranspiration, estimate EC footprint soil states, connect differences in fluxes to footprint composition, and assess key drivers behind soil state variability. I verify the hypothesis that a small number of soil probes poorly estimates the footprint conditions for soil moisture, due to its high spatial variability. Soil temperature, however, behaves more consistently in time and space. As such, distributed surface measurements within the EC footprint allow for stronger ties between evapotranspiration and moisture, but demonstrate no significant improvement in connecting sensible heat flux and temperature. I also find that in these systems vegetation cover appears to have stronger controls on soil moisture and temperature than does soil texture. Further, I explore the influence of footprint vegetation composition on the measured fluxes, which reveals that during the monsoon season evaporative fraction tends to increase with footprint bare soil coverage for the New Mexico site and that the ratio of daily transpiration to evapotranspiration increases with grass coverage at the Arizona site. The thesis results are useful for understanding the land-atmosphere interactions of these ecosystems and for guiding future EC studies in heterogeneous landscapes.
ContributorsAnderson, Cody Alan (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhihua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
156248-Thumbnail Image.png
Description
The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability

The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability of nineteen GCMs from the Coupled Model Intercomparison Project Phase Five

(CMIP5) and four nested Regional Climate Models (RCMs) in reproducing the statistical

properties of the hydrologic cycle and temperature in the CRB. To capture the transition

from snow-dominated to semiarid regions, analyses are conducted by spatially averaging

the climate variables in four nested sub-basins. Most models overestimate the mean

annual precipitation (P) and underestimate the mean annual temperature (T) at all

locations. While a group of models capture the mean annual runoff at all sub-basins with

different strengths of the hydrological cycle, another set of models overestimate the mean

annual runoff, due to a weak cycle in the evaporation channel. An abrupt increase in the

mean annual T in observed and most of the simulated time series (~0.8 °C) is detected at

all locations despite the lack of any statistically significant monotonic trends for both P

and T. While all models simulate the seasonality of T quite well, the phasing of the

seasonal cycle of P is fairly reproduced in just the upper, snow-dominated sub-basin.

Model performances degrade in the larger sub-basins that include semiarid areas, because

several GCMs are not able to capture the effect of the North American monsoon. Finally,

the relative performances of the climate models in reproducing the climatologies of P and

T are quantified to support future impact studies in the basin.
ContributorsGautam, Jenita (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2018
156960-Thumbnail Image.png
Description
Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the

Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.
ContributorsKo, Ara (Author) / Mascaro, Giuseppe (Thesis advisor) / Vivoni, Enrique R. (Thesis advisor) / Myint, Soe (Committee member) / Wang, Zhihua (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2018
136333-Thumbnail Image.png
Description
Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall

Utilizing an urban canopy model (UCM) developed by Zhihua Wang, Ph.D. for a research study conducted for the National Asphalt Pavement Association (NAPA), several scenarios were run in order to determine the impact on the mitigation of the urban heat island (UHI) effect. These scenarios included various roof albedo, wall albedo, ground albedo, a combination of all three albedos, roof emissivity, wall emissivity, ground emissivity, a combination of all three emissivities, and normalized building height as independent variables. Dependent variables included canyon air temperature, effective ground temperature, effective roof temperature, effective wall temperature, and sensible heat flux. It was found that emissivity does play a part in reducing the different dependent variables; however, typically emissivity values are already within a preferred range that not much can be done with them. Normalized building height has a minor impact but the impact that it does have upon the different variables is lessened with lower values of the normalized building height. Increasing the wall albedo decreased the canyon air temperature and the effective wall temperature the most compared to the other variables when considering expenses. An increase in roof albedo reduced effective roof temperature and sensible heat flux the most when taking into consideration the cost of changing the albedo of the surface. Larger values of ground albedo helped to reduce the effective ground temperature more than the other variables considered when a budget is necessary.
ContributorsHousenga, Hannah Eileen (Author) / Kaloush, Kamil (Thesis director) / Wang, Zhihua (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
154963-Thumbnail Image.png
Description
Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their

Land surface fluxes of energy and mass developed over heterogeneous mountain landscapes are fundamental to atmospheric processes. However, due to their high complexity and the lack of spatial observations, land surface processes and land-atmosphere interactions are not fully understood in mountain regions. This thesis investigates land surface processes and their impact on convective precipitation by conducting numerical modeling experiments at multiple scales over the North American Monsoon (NAM) region. Specifically, the following scientific questions are addressed: (1) how do land surface conditions evolve during the monsoon season, and what are their main controls?, (2) how do the diurnal cycles of surface energy fluxes vary during the monsoon season for the major ecosystems?, and (3) what are the impacts of surface soil moisture and vegetation condition on convective precipitation?

Hydrologic simulation using the TIN-based Real-time Integrated Basin Simulator (tRIBS) is firstly carried out to examine the seasonal evolution of land surface conditions. Results reveal that the spatial heterogeneity of land surface temperature and soil moisture increases dramatically with the onset of monsoon, which is related to seasonal changes in topographic and vegetation controls. Similar results are found at regional basin scale using the uncoupled WRF-Hydro model. Meanwhile, the diurnal cycles of surface energy fluxes show large variation between the major ecosystems. Differences in both the peak magnitude and peak timing of plant transpiration induce mesoscale heterogeneity in land surface conditions. Lastly, this dissertation examines the upscale effect of land surface heterogeneity on atmospheric condition through fully-coupled WRF-Hydro simulations. A series of process-based experiments were conducted to identify the pathways of soil moisture-rainfall feedback mechanism over the NAM region. While modeling experiments confirm the existence of positive soil moisture/vegetation-rainfall feedback, their exact pathways are slightly different. Interactions between soil moisture, vegetation cover, and rainfall through a series of land surface and atmospheric boundary layer processes highlight the strong land-atmosphere coupling in the NAM region, and have important implications on convective rainfall prediction. Overall, this dissertation advances the study of complex land surface processes over the NAM region, and made important contributions in linking complex hydrologic, ecologic and atmospheric processes through numerical modeling.
ContributorsXiang, Tiantian (Author) / Vivoni, Enrique R (Thesis advisor) / Gochis, David J (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2016
155737-Thumbnail Image.png
Description
Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of hydro-climatic impacts on water resource management in this region. This

thesis is devoted to understanding the impact of land use and land cover (LULC) changes

on the local and regional hydroclimate, with the goal to address urban planning issues

and provide guidance for sustainable development.

In this study, three densely populated urban areas, viz. Phoenix, Las Vegas and

Denver in the CRB are selected to capture the various dimensions of the impacts of land

use changes on the regional hydroclimate in the entire CRB. Weather Research and

Forecast (WRF) model, incorporating the latest urban modeling system, is adopted for

regional climate modeling. Two major types of urban LULC changes are studied in this

Thesis: (1) incorporation of urban trees with their radiative cooling effect, tested in

Phoenix metropolitan, and (2) projected urban expansion in 2100 obtained from

Integrated Climate and Land Use Scenarios (ICLUS) developed by the US

Environmental Protection Agency for all three cities.

The results demonstrated prominent nocturnal cooling effect of due to radiative

shading effect of the urban trees for Phoenix reducing urban surface and air temperature

by about 2~9 °C and 1~5 °C respectively and increasing relative humidity by 10~20%

during an mean diurnal cycle. The simulations of urban growth in CRB demonstratedii

nocturnal warming of about 0.36 °C, 1.07 °C, and 0.94 °C 2m-air temperature and

comparatively insignificant change in daytime temperature, with the thermal environment

of Denver being the most sensitive the urban growth. The urban hydroclimatic study

carried out in the thesis assists in identifying both context specific and generalizable

relationships, patterns among the cities, and is expected to facilitate urban planning and

management in local (cities) and regional scales.
ContributorsUpreti, Ruby (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique R. (Committee member) / Mascaro, Giuseppe (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2017
187845-Thumbnail Image.png
Description
The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection

The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection and modeling techniques to assess key hydrologic variables in drylands, including irrigated water use, streamflow, and snowpack conditions, answering following research questions that also have broad societal implications: (1) What are the individual and combined effects of future climate and land use change on irrigation water use (IWU) in the Phoenix Metropolitan Area (PMA)?; (2) How can temporal changes in streamflow and the impacts of flash flooding be detected in dryland rivers?; and (3) What are the impacts of rainfall-snow partitioning on future snowpack and streamflow in the Colorado River Basin (CRB)? Firstly, I conducted a scenario modeling using the Variable Infiltration Capacity (VIC) model under future climate and land use change scenarios. Results showed that future IWU will change from -0.5% to +6.8% in the far future (2071-2100) relative to the historical period (1981-2010). Secondly, I employed CubeSat imagery to map streamflow presence in the Hassayampa River of Arizona, finding that the imaging capacity of CubeSats enabled the detection of ephemeral flow events using the surface reflectance of the near-infrared (NIR) band. Results showed that 12% of reaches were classified as intermittent, with the remaining as ephemeral. Finally, I implemented a physically-based rainfall-snow partitioning scheme in the VIC model that estimates snowfall fraction from the wet-bulb temperature using a sigmoid function. The new scheme predicts more significant declines in snowfall (-8 to -11%) and streamflow (-14 to -27%) by the end of the 21st century over the CRB, relative to historical conditions. Overall, this dissertation demonstrates how innovative technologies can enhance the understanding of dryland hydrologic changes and inform decision-making of water resources management. The findings offer important insights for policymakers, water managers, and researchers who seek to ensure water resources sustainability under the effects of climate and land use change.
ContributorsWang, Zhaocheng (Author) / Vivoni, Enrique R (Thesis advisor) / White, Dave D (Committee member) / Mascaro, Giuseppe (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2023
154048-Thumbnail Image.png
Description
Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model
ContributorsKhatavkar, Puneet N (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2015