Matching Items (4)
Filtering by

Clear all filters

152753-Thumbnail Image.png
Description
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
ContributorsPope, Ronald L (Author) / Wu, Jianguo (Thesis advisor) / Boone, Christopher G. (Committee member) / Brazel, Anthony J. (Committee member) / Forzani, Erica S. (Committee member) / Fraser, Matthew P. (Committee member) / Arizona State University (Publisher)
Created2014
151081-Thumbnail Image.png
Description
ABSTRACT In recent years, the total amount of air pollutant emissions in China was reduced year by year, but pollution is still very serious, especially in some big cities where the environmental pollution has worsened in the last 20 years. The "Law of the People's Republic of China on the

ABSTRACT In recent years, the total amount of air pollutant emissions in China was reduced year by year, but pollution is still very serious, especially in some big cities where the environmental pollution has worsened in the last 20 years. The "Law of the People's Republic of China on the Prevention and Control of Atmospheric Pollution" ( LPCAP) was established in 1987. With the development of industrialization and air pollution changes, it had been revised twice in 1995 and 2000.The third revision of the law began in 2009 which was included in the "Eleventh five-year National People's Congress Standing legislative plan" and the State Council's 2009 legislative program. At present, the third revision of the LPCAP is in progress and MEP has completed the manuscript of the revised draft of the law. The purpose of this study is to explore the current situation of China's air pollution, as well as history of LPCAP, analysis of amendments in atmospheric legislation and the achievements of the LPCAP. Combined with China current situation, the research exposed some urgent problems of the Chinese atmospheric legislation which are related to: fã The issues of the regional Total Emission Control (TEC) policy and division. fã The issues of allocation of pollutant emission allowances and trade policy fã The issues of improving the pollution emission permit system. fã The issues of the mobile source emissions management. fã The issues of fuel management. fã The issues of the guarantee measures of the implementation of the LPCAP. In addition, the study compares the LPCAP with the U.S. CAA to offer some solutions for the third revised law and tries to find a fundamental solution for the flaws of China's existing Atmospheric Pollution Prevention legal system to be more Operable. As a result, the gap in air quality in China and the developed countries of the world will be narrowed and China will be better positioned for sustainable development.
ContributorsLi, Shengtang (Author) / Olson, Larry (Thesis advisor) / Brown, Albert (Committee member) / Peterson, Danny (Committee member) / Arizona State University (Publisher)
Created2012
154136-Thumbnail Image.png
Description
United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the time USEPA conducted the analysis. The importance of identifying any air toxic pollutants affecting school children needs to be analyzed.

United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the time USEPA conducted the analysis. The importance of identifying any air toxic pollutants affecting school children needs to be analyzed. Conducting an air monitoring toxic analysis on the Navajo Nation at Church Rock Elementary School, Church Rock, New Mexico (CRNM) was carried out. The current school location posed a concern, in regards to the surrounding stationary, mobile, and natural emissions emitted all types of toxic pollutants. USEPA sponsors various air monitoring program, which Tribal Air Monitoring Support (TAMS) program undertook, and offered tribal programs, organizations or agencies to utilized air monitoring equipment's. The air monitoring setup was conducted with the contract Eastern Research Group, Inc. (ERG) laboratory, where collection of 24-hour ambient air samples for 60 days on a 6-day sampling interval were performed. The analysis for volatile organic compounds (VOCs)were collected from canister samples using USEPA Compendium Method TO-15, polycyclic aromatic hydrocarbons (PAHs) from polyurethane foam (PUF) and XAD-2 resin samples using USEPA Compendium Method TO-13A. Carbonyl compounds were collected by sorbent cartridge samples using USEPA Compendium Method TO-11A, and trace of metals from filters were sampled using USEPA Compendium Method IO-3.5 and FEM EQL-0512-202. A total of 53 VOC concentrations were greater than 1 μg/m3, where dichlorodifluoromethane, trichlorofluoromethane, chloromethane, dichloromethane, propylene, toluene, acrolein and acetylene were detected. A total of 23 carbonyl compound concentrations were greater than 1 μg/m3, where acetone and formaldehyde were measured. Naphthalene average with the highest average for PAHs, where phenanthrene and retene were the second and third highest averages. As for the metals the highest averages resulted from manganese, chromium and lead. Overall, the air toxic pollutants resulted from CRNM surrounding monitoring site were detected. Identifying the potential emitter source or sources cannot be assessed.
ContributorsBilley, Karmen (Author) / Olson, Larry (Thesis advisor) / Peterson, Danny (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2015
156415-Thumbnail Image.png
Description
Mexico City has an ongoing air pollution issue that negatively affects its citizens and surroundings with current structural disconnections preventing the city from improving its overall air quality. Thematic methodological analysis reveals current obstacles and barriers, as well as variables contributing to this persistent problem. A historical background reveals current

Mexico City has an ongoing air pollution issue that negatively affects its citizens and surroundings with current structural disconnections preventing the city from improving its overall air quality. Thematic methodological analysis reveals current obstacles and barriers, as well as variables contributing to this persistent problem. A historical background reveals current programs and policies implemented to improve Mexico’s City air quality. Mexico City’s current systems, infrastructure, and policies are inadequate and ineffective. There is a lack of appropriate regulation on other modes of transportation, and the current government system fails to identify how the class disparity in the city and lack of adequate education are contributing to this ongoing problem. Education and adequate public awareness can potentially aid the fight against air pollution in the Metropolitan City.
ContributorsGarcia, Lucero (Author) / Duarte, Marisa E. (Thesis advisor) / Arzubiaga, Angela (Committee member) / Richter, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018