Matching Items (10)
Filtering by

Clear all filters

149988-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means of diagnosing the disease before neurodegeneration is significant and sadly there is no cure that controls its progression. The protein beta-amyloid or Aâ plays an important role in the progression of the disease. It is formed from the cleavage of the Amyloid Precursor Protein by two enzymes - â and ã-secretases and is found in the plaques that are deposits found in Alzheimer brains. This work describes the generation of therapeutics based on inhibition of the cleavage by â-secretase. Using in-vitro recombinant antibody display libraries to screen for single chain variable fragment (scFv) antibodies; this work describes the isolation and characterization of scFv that target the â-secretase cleavage site on APP. This approach is especially relevant since non-specific inhibition of the enzyme may have undesirable effects since the enzyme has been shown to have other important substrates. The scFv iBSEC1 successfully recognized APP, reduced â-secretase cleavage of APP and reduced Aâ levels in a cell model of Alzheimer's Disease. This work then describes the first application of bispecific antibody therapeutics to Alzheimer's Disease. iBSEC1 scFv was combined with a proteolytic scFv that enhances the "good" pathway (á-secretase cleavage) that results in alternative cleavage of APP to generate the bispecific tandem scFv - DIA10D. DIA10D reduced APP cleavage by â-secretase and steered it towards the "good" pathway thus increasing the generation of the fragment sAPPá which is neuroprotective. Finally, treatment with iBSEC1 is evaluated for reduced oxidative stress, which is observed in cells over expressing APP when they are exposed to stress. Recombinant antibody based therapeutics like scFv have several advantages since they retain the high specificity of the antibodies but are safer since they lack the constant region and are smaller, potentially facilitating easier delivery to the brain
ContributorsBoddapati, Shanta (Author) / Sierks, Michael (Thesis advisor) / Arizona State University (Publisher)
Created2011
149812-Thumbnail Image.png
Description
Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP mice) display neural hyper-excitation and epileptic seizures. Hyperexcitation is particularly important because it contributes to the high incidence of epilepsy

Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP mice) display neural hyper-excitation and epileptic seizures. Hyperexcitation is particularly important because it contributes to the high incidence of epilepsy in AD patients as well as AD-related synaptic deficits and neurodegeneration. Given that there is significant amyloid-β (Aβ) accumulation and deposition in AD brain, Aβ exposure ultimately may be responsible for neural hyper-excitation in both AD patients and animal models. Emerging evidence indicates that α7 nicotinic acetylcholine receptors (α7-nAChR) are involved in AD pathology, because synaptic impairment and learning and memory deficits in a hAPPα7-/- mouse model are decreased by nAChR α7 subunit gene deletion. Given that Aβ potently modulates α7-nAChR function, that α7-nAChR expression is significantly enhanced in both AD patients and animal models, and that α7-nAChR play an important role in regulating neuronal excitability, it is reasonable that α7-nAChRs may contribute to Aβ-induced neural hyperexcitation. We hypothesize that increased α7-nAChR expression and function as a consequence of Aβ exposure is important in Aβ-induced neural hyperexcitation. In this project, we found that exposure of Aβ aggregates at a nanomolar range induces neuronal hyperexcitation and toxicity via an upregulation of α7-nAChR in cultured hippocampus pyramidal neurons. Aβ up-regulates α7-nAChRs function and expression through a post translational mechanism. α7-nAChR up-regulation occurs prior to Aβ-induced neuronal hyperexcitation and toxicity. Moreover, inhibition of α7-nAChR or deletion of α7-nAChR prevented Aβ induced neuronal hyperexcitation and toxicity, which suggests that α7-nAChRs are required for Aβ induced neuronal hyperexcitation and toxicity. These results reveal a profound role for α7-nAChR in mediating Aβ-induced neuronal hyperexcitation and toxicity and predict that Aβ-induced up-regulation of α7-nAChR could be an early and critical event in AD etiopathogenesis. Drugs targeting α7-nAChR or seizure activity could be viable therapies for AD treatment.
ContributorsLiu, Qiang (Author) / Wu, Jie (Thesis advisor) / Lukas, Ronald J (Committee member) / Chang, Yongchang (Committee member) / Sierks, Michael (Committee member) / Smith, Brian (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2011
152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152034-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions of the brain important for cognitive function. A primary component of these plaques is the amyloid-beta protein. While a natively

Alzheimer's Disease (AD) is a progressive neurodegenerative disease accounting for 50-80% of dementia cases in the country. This disease is characterized by the deposition of extracellular plaques occurring in regions of the brain important for cognitive function. A primary component of these plaques is the amyloid-beta protein. While a natively unfolded protein, amyloid-beta can misfold and aggregate generating a variety of different species including numerous different soluble oligomeric species some of which are precursors to the neurofibrillary plaques. Various of the soluble amyloid-beta oligomeric species have been shown to be toxic to cells and their presence may correlate with progression of AD. Current treatment options target the dementia symptoms, but there is no effective cure or alternative to delay the progression of the disease once it occurs. Amyloid-beta aggregates show up many years before symptoms develop, so detection of various amyloid-beta aggregate species has great promise as an early biomarker for AD. Therefore reagents that can selectively identify key early oligomeric amyloid-beta species have value both as potential diagnostics for early detection of AD and as well as therapeutics that selectively target only the toxic amyloid-beta aggregate species. Earlier work in the lab includes development of several different single chain antibody fragments (scFvs) against different oligomeric amyloid-beta species. This includes isolation of C6 scFv against human AD brain derived oligomeric amyloid-beta (Kasturirangan et al., 2013). This thesis furthers research in this direction by improving the yields and investigating the specificity of modified C6 scFv as a diagnostic for AD. It is motivated by experiments reporting low yields of the C6 scFv. We also used the C6T scFv to characterize the variation in concentration of this particular oligomeric amyloid-beta species with age in a triple transgenic AD mouse model. We also show that C6T can be used to differentiate between post-mortem human AD, Parkinson's disease (PD) and healthy human brain samples. These results indicate that C6T has potential value as a diagnostic tool for early detection of AD.
ContributorsVenkataraman, Lalitha (Author) / Sierks, Michael (Thesis advisor) / Rege, Kaushal (Committee member) / Pauken, Christine (Committee member) / Arizona State University (Publisher)
Created2013
150452-Thumbnail Image.png
Description
The goal of this thesis is to test whether Alzheimer's disease (AD) is associated with distinctive humoral immune changes that can be detected in plasma and tracked across time. This is relevant because AD is the principal cause of dementia, and yet, no specific diagnostic tests are universally employed in

The goal of this thesis is to test whether Alzheimer's disease (AD) is associated with distinctive humoral immune changes that can be detected in plasma and tracked across time. This is relevant because AD is the principal cause of dementia, and yet, no specific diagnostic tests are universally employed in clinical practice to predict, diagnose or monitor disease progression. In particular, I describe herein a proteomic platform developed at the Center for Innovations in Medicine (CIM) consisting of a slide with 10.000 random-sequence peptides printed on its surface, which is used as the solid phase of an immunoassay where antibodies of interest are allowed to react and subsequently detected with a labeled secondary antibody. The pattern of antibody binding to the microarray is unique for each individual animal or person. This thesis will evaluate the versatility of the microarray platform and how it can be used to detect and characterize the binding patterns of antibodies relevant to the pathophysiology of AD as well as the plasma samples of animal models of AD and elderly humans with or without dementia. My specific aims were to evaluate the emergence and stability of immunosignature in mice with cerebral amyloidosis, and characterize the immunosignature of humans with AD. Plasma samples from APPswe/PSEN1-dE9 transgenic mice were evaluated longitudinally from 2 to 15 months of age to compare the evolving immunosignature with non-transgenic control mice. Immunological variation across different time-points was assessed, with particular emphasis on time of emergence of a characteristic pattern. In addition, plasma samples from AD patients and age-matched individuals without dementia were assayed on the peptide microarray and binding patterns were compared. It is hoped that these experiments will be the basis for a larger study of the diagnostic merits of the microarray-based immunoassay in dementia clinics.
ContributorsRestrepo Jimenez, Lucas (Author) / Johnston, Stephen A. (Thesis advisor) / Chang, Yung (Committee member) / Reiman, Eric (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2011
136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
153246-Thumbnail Image.png
Description
This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column

This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column study was set up to measure Legionella transport in the columns under Arizona recharge basin conditions. Two columns, A and B, were packed to a depth of 122 cm with a loamy sand media collected from a recharge basin in Mesa, Arizona. The grain size distribution of Column A differed from that of Column B by the removal of fines passing the #200 sieve. The different soil profiles represented by column A and B allowed for further investigation of soil attributes which influence the microbial transport mechanism. Both clear PVC columns stand at a height of 1.83 m with an inner diameter of 6.35 cm. Sampling ports were drilled into the column at the soil depths 15, 30, 60, 92, 122 cm. Both columns were acclimated with tertiary treated waste water and set to a flow rate of approximately 1.5 m/d. The columns were used to assess the transport of a bacterial indicator, E. coli, in addition to assessing the study's primary pathogen of concern, Legionella. Approximately, 〖10〗^7 to 〖10〗^9 E. coli cells or 〖10〗^6 to 〖10〗^7Legionella cells were spiked into the columns' head waters for each experiment. Periodically, samples were collected from each column's sampling ports, until a minimum of three pore volume passed through the columns.

The pilot-scale, column study produced novel results which demonstrated the mechanism for Legionella to be transported through recharge basin soil. E. coli was transported, through 122 cm of the media in under 6 hours, whereas, Legionella was transported, through the same distance, in under 30 hours. Legionella has been shown to survive in low nutrient conditions for over a year. Given the novel results of this proof of concept study, a claim can be made for the transport of Legionella into groundwater aquifers through engineering recharge basin conditions, in Central Arizona.
ContributorsMcBurnett, Lauren Rae (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
157739-Thumbnail Image.png
Description
The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6%

The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6% chlorine solution with subsequent backwashing with chlorine-neutral water (tap water and Na2S2O3) thus ensuring no residual chlorine in the tank. The transport of bacteria was measured using samples collected from ports at vertical distances of 5, 15 and 25 inches (12.7, 38.1 and 63.5 cm) from the surface of the sand on both sides for the 2-D tank. An influent concentration of 105 CFU/mL was set as a baseline for both microbes and the percolation rate was set at 11.37 inches/day using a peristaltic pump at the bottom outlet. At depths of 5, 15 and 25 inches, E. coli breakthroughs were recorded at 5, 17 and 28 hours for the ports on the right side and 7, 17 and 29 hours for the ports on the left sides, respectively. At respective distances Legionella breakthroughs were recorded at 8, 22 and 35 hours for the ports on the right side and 9, 24, 36 hours for the ports on the left side, respectively which is homologous to its pleomorphic nature. A tracer test was done and the visual breakthroughs were recorded at the same depths as the microbes. The breakthroughs for the dye at depths of 5, 15 and 25 inches, were recorded at 13.5, 41 and 67 hours for the ports on the right side and 15, 42.5 and 69 hours for the ports on the left side, respectively. However, these are based on visual estimates and the physical breakthrough could have happened at the respective heights before the reported times. This study provided a good basis for the premise that transport of bacterial cells and chemicals exists under recharge practices.
ContributorsMondal, Indrayudh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Dahlen, Paul (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2019
158164-Thumbnail Image.png
Description
Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States each year and is a leading cause of death and disability for children and young adults in industrialized countries. Unfortunately, the molecular and cellular mechanisms of injury progression have yet to be fully elucidated. Consequently, this

Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States each year and is a leading cause of death and disability for children and young adults in industrialized countries. Unfortunately, the molecular and cellular mechanisms of injury progression have yet to be fully elucidated. Consequently, this complexity impacts the development of accurate diagnosis and treatment options. Biomarkers, objective signatures of injury, can inform and facilitate development of sensitive and specific theranostic devices. Discovery techniques that take advantage of mining the temporal complexity of TBI are critical for the identification of high specificity biomarkers.

Domain antibody fragment (dAb) phage display, a powerful screening technique to uncover protein-protein interactions, has been applied to biomarker discovery in various cancers and more recently, neurological conditions such as Alzheimer’s Disease and stroke. The small size of dAbs (12-15 kDa) and ability to screen against brain vasculature make them ideal for interacting with the neural milieu in vivo. Despite these characteristics, implementation of dAb phage display to elucidate temporal mechanisms of TBI has yet to reach its full potential.

My dissertation employs a unique target identification pipeline that entails in vivo dAb phage display and next generation sequencing (NGS) analysis to screen for temporal biomarkers of TBI. Using a mouse model of controlled cortical impact (CCI) injury, targeting motifs were designed based on the heavy complementarity determining region (HCDR3) structure of dAbs with preferential binding to acute (1 day) and subacute (7 days) post-injury timepoints. Bioreactivity for these two constructs was validated via immunohistochemistry. Further, immunoprecipitation-mass spectrometry analysis identified temporally distinct candidate biological targets in brain tissue lysate.

The pipeline of phage display followed by NGS analysis demonstrated a unique approach to discover motifs that are sensitive to the heterogeneous and diverse pathology caused by neural injury. This strategy successfully achieves 1) target motif identification for TBI at distinct timepoints and 2) characterization of their spatiotemporal specificity.
ContributorsMartinez, Briana Isabella (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Lifshitz, Jonathan (Committee member) / Sierks, Michael (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2020
153298-Thumbnail Image.png
Description
Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of

Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of these phototrophic microbes for biofuel production. Viruses have the potential to significantly reduce microbial populations and limit their growth rates. It is therefore important to understand how viruses affect phototrophic microbes and the prevalence of these viruses in the environment. For this study, phototrophic microbes were grown in glass bioreactors, under continuous light and aeration. Detection and quantification of viruses of both environmental and laboratory microbial strains were measured through the use of a plaque assay. Plates were incubated at 25º C under continuous direct florescent light. Several environmental samples were taken from Tempe Town Lake (Tempe, AZ) and all the samples tested positive for viruses. Virus free phototrophic microbes were obtained from plaque assay plates by using a sterile loop to scoop up a virus free portion of the microbial lawn and transferred into a new bioreactor. Isolated cells were confirmed virus free through subsequent plaque assays. Viruses were detected from the bench scale bioreactors of Cyanobacteria Synechocystis PCC 6803 and the environmental samples. Viruses were consistently present through subsequent passage in fresh cultures; demonstrating viral contamination can be a chronic problem. In addition TEM was performed to examine presence or viral attachment to cyanobacterial cells and to characterize viral particles morphology. Electron micrographs obtained confirmed viral attachment and that the viruses detected were all of a similar size and shape. Particle sizes were measured to be approximately 50-60 nm. Cell reduction was observed as a decrease in optical density, with a transition from a dark green to a yellow green color for the cultures. Phototrophic microbial viruses were demonstrated to persist in the natural environment and to cause a reduction in algal populations in the bioreactors. Therefore it is likely that viruses could have a significant impact on microbial biofuel production by limiting the yields of production ponds.
ContributorsKraft, Kyle (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014