Matching Items (9)
Filtering by

Clear all filters

150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
136790-Thumbnail Image.png
Description
Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons,

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons, however it is yet to be seen if Camponotus floridanus can discriminate between linear hydrocarbons of similar length. Individual specimens were conditioned in three different ways: 5 conditioning with high concentration of sugar water (1;1 ratio), 1 conditioning with high concentration of sugar water, and 5 conditioning with low concentration of sugar water (1;4). Two linear hydrocarbons were use, C23 and C24, with C23 always being the conditioned stimulus. Specimens who were conditioned 5 times with high concentration of sugar water were the only group to show a significant response to the conditioned stimulus with a p-value of .008 and exhibited discrimination behavior 46% of the time. When compared 5 conditioning with high concentration to the other two testing conditioning groups, 1 conditioning with high concentration produced an insignificant p-value of .13 was obtained whereas when comparing it with 5 conditioning low concentration of sugar a significant p-value of .0132 was obtained. This indiciates that Camponotus floridanus are capable of discrimination however must be conditioned with high concentration of sugar water, while number of conditioning is insignificant.
ContributorsDamari, Ben Aviv (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136060-Thumbnail Image.png
Description
ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of these odorants is made possible by the chemoreceptive functions of sensilla basiconica and sensilla trichoid which exist on the antennal structure. The present study consists of both a morphological analysis and electrophysiological experiment concerning sensilla basiconica. It attempts to characterize the function of neurons present in sensilla basiconica through single sensillum recordings and contributes to existing literature by determining if a social insect, such as the dampwood termite, is able to perceive a wide spectrum of odorants despite having significantly fewer olfactory receptors than most other social insect species. Results indicated that sensilla basiconica presence significantly out-paced that of sensilla trichoid and sensilla chaetica combined, on all flagellomeres. Analysis demonstrated significant responses to all general odorants and several cuticular hydrocarbons. Combined with the knowledge of fewer olfactory receptors present in this species and their lifestyle, results may indicate a positive association between the the social complexity of an insect's lifestyle and the number of ORs the individuals within that colony possess.
ContributorsMcGlone, Taylor (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
148329-Thumbnail Image.png
Description

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive

Olfactory discrimination tasks can provide useful information about how olfaction may have evolved by demonstrating which types of compounds animals will detect and respond to. Ants discriminate between nestmates and non-nestmates by using olfaction to detect the cuticular hydrocarbons on other ants, and Camponotus floridanus have particularly clear and aggressive responses to non-nestmates. A new method of adding hydrocarbons to ants, the “Snow Globe” method was further optimized and tested on C. floridanus. It involves adding hydrocarbons and a solvent to a vial of water, vortexing it, suspending hydrocarbon droplets throughout the solution, and then dipping a narcotized ant in. It is hoped this method can evenly coat ants in hydrocarbon. Ants were treated with heptacosane (C27), nonacosane (C29), hentriacontane (C31), a mixture of C27/C29/C31, 2-methyltriacontane (2MeC30), S-3-methylhentriacontane (SMeC31), and R-3-methylhentriacontane (RMeC31). These were chosen to see how ants reacted in a nestmate recognition context to methyl-branched hydrocarbons, R and S enantiomers, and to multiple added alkanes. Behavior assays were performed on treated ants, as well as two untreated controls, a foreign ant and a nestmate ant. There were 15 replicates of each condition, using 15 different queenright colonies. The Snow Globe method successfully transfers hydrocarbons, as confirmed by solid phase microextraction (SPME) done on treated ants, and the behavior assay data shows the foreign control, SMeC31, and the mixture of C27/29/31 were all statistically significant in their differences from the native control. The multiple alkane mixture received a significant response while single alkanes did not, which supports the idea that larger variations in hydrocarbon profile are needed for an ant to be perceived as foreign. The response to SMeC31 shows C. floridanus can respond during nestmate recognition to hydrocarbons that are not naturally occurring, and it indicates the nestmate recognition process may simply be responding to any compounds not found in the colony profile and rather than detecting particular foreign compounds.

ContributorsNoss, Serena Marie (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Oxymonas is a genus of Oxymonad protist found in the hindgut of drywood termites (family Kalotermitidae). Many genera of drywood termites are invasive pests globally. The hindgut microbiome of Cryptotermes brevis, the West Indian drywood termite, has not been described in detail, and only one published sequence exists of Oxymonas

Oxymonas is a genus of Oxymonad protist found in the hindgut of drywood termites (family Kalotermitidae). Many genera of drywood termites are invasive pests globally. The hindgut microbiome of Cryptotermes brevis, the West Indian drywood termite, has not been described in detail, and only one published sequence exists of Oxymonas from C. brevis. This study aims to analyze Oxymonas sequences in C. brevis from whole gut genetic material, as well as to dissect its place in phylogenetic trees of Oxymonas and how it fits into specific and evolutionary patterns. To amplify the 18S rRNA gene Oxymonas from C. brevis, the MasterPure DNA extraction kit was used, followed by PCR amplification, followed by agarose gel electrophoresis, followed by purification of the resulting gel bands, followed by ligation/transformation on to an LB agar plate, followed by cloning the resulting bacterial colonies, and topped off by colony screening. The colony screening PCR products were then sequenced in the Genomics Core, assembled in Geneious, aligned and trimmed into a phylogenetic tree, along with several long-read amplicon sequences from Oxymonas in other drywood termites. All whole gut sequences and one amplicon from C. brevis formed a single clade, sharing an ancestor with a sister clade of Oxymonas sp. from C. cavifrons and Procryptotermes leewardensis, but the other long-read fell into its own clade in a different spot on the tree. It can be conjectured that the latter sequence was contaminated and that the C. brevis clones are a monophyletic group, a notion further corroborated by a distantly related clade featuring sequences from Cryptotermes dudleyi, which in turn has a sister taxon of Oxymonas clones from C. cavifrons and P. leewardensis, pointing toward a different kind of co-diversification of the hosts and symbionts rather than cospeciation.

ContributorsSharma, Noah (Author) / Gile, Gillian (Thesis director) / Shaffer, Zachary (Committee member) / Coots, Nicole (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
168427-Thumbnail Image.png
Description
A group of educators and administrators in an international school in Thailand collaborated for a year to devise and publish a policy document with aim to reform assessment practices of its faculty. The group’s beliefs derived from standards-based assessment leaders and its broad aim was to build a more coherent,

A group of educators and administrators in an international school in Thailand collaborated for a year to devise and publish a policy document with aim to reform assessment practices of its faculty. The group’s beliefs derived from standards-based assessment leaders and its broad aim was to build a more coherent, accurate, and meaningful assessment system. Using Actor Network Theory as its theoretical perspective, this mixed-methods action research study explored the extent that the policy document changed the beliefs and practices of the faculty, the assessment materials within the system itself, and what other factors may also help account for any changes. The first finding is that the policy did lead to observable changes in practices of faculty traced in tests, quizzes, and the gradebooks that record assessments. A second finding is that the impact of the policy as an agent for change depends on the frequency that it is referenced.
ContributorsMeisner, Nathan Robert (Author) / Gee, Elisabeth (Thesis advisor) / Marsh, Josephine (Committee member) / Heslip, Robin (Committee member) / Arizona State University (Publisher)
Created2021
187779-Thumbnail Image.png
Description
Aggregation is a fundamental principle of animal behavior; it is especially significant tohighly social species, like ants. Ants typically aggregate their workers and brood in a central nest, potentially due to advantages in colony defense and regulation of the environment. In many ant species, when a colony must abandon its

Aggregation is a fundamental principle of animal behavior; it is especially significant tohighly social species, like ants. Ants typically aggregate their workers and brood in a central nest, potentially due to advantages in colony defense and regulation of the environment. In many ant species, when a colony must abandon its nest, it can effectively reach consensus on a new home. Ants of the genus Temnothorax have become a model for this collective decision-making process, and for decentralized cognition more broadly. Previous studies examine emigration by well-aggregated colonies, but can these ants also reach consensus when the colony has been scattered? Such scattering may readily occur in nature if the nest is disturbed by natural or man- made disasters. In this exploratory study, Temnothorax rugatulus colonies were randomly scattered in an arena and presented with a binary equal choice of nest sites. Findings concluded that the colonies were able to re-coalesce, however consensus is more difficult than for aggregated colonies and involved an additional primary phase of multiple temporary aggregations eventually yielding to reunification. The maximum percent of colony utilization for these aggregates was reached within the first hour, after which point, consensus tended to rise as aggregation decreased. Small, but frequent, aggregates formed within the first twenty minutes and remained and dissolved to the nest by varying processes. Each colony included a clump containing the queen, with the majority of aggregates containing at least one brood item. These findings provide additional insight to house-hunting experiments in more naturally challenging circumstances, as well as aggregation within Temnothorax colonies.
ContributorsGoodland, Brooke (Author) / Shaffer, Zachary (Thesis advisor) / Pratt, Stephen (Thesis advisor) / Pavlic, Theodore (Committee member) / Arizona State University (Publisher)
Created2023
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
157712-Thumbnail Image.png
Description
This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing glycoside hydrolases to break down the polysaccharides found in lignocellulose.

This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing glycoside hydrolases to break down the polysaccharides found in lignocellulose. Yet, only a few molecular studies have been done to confirm the protist species responsible for particular enzymes. By mining publicly available and newly generated genomic and transcriptomic data, including three transcriptomes from isolated protist cells, I identify over 200 new glycoside hydrolase sequences and compute the phylogenies of eight glycoside hydrolase families (GHFs) reported to be expressed by termite hindgut protists.

Of those families examined, the results are broadly consistent with Todaka et al. 2010, though none of the GHFs found were expressed in both termite-associated protist and non-termite-associated protist transcriptome data. This suggests that, rather than being inherited from their free-living protist ancestors, GHF genes were acquired by termite protists while within the termite gut, potentially via lateral gene transfer (LGT). For example one family, GHF10, implies a single acquisition of a bacterial xylanase into termite protists. The phylogenies from GHF5 and GHF11 each imply two distinct acquisitions in termite protist ancestors, each from bacteria. In eukaryote-dominated GHFs, GHF7 and GHF45, there are three apparent acquisitions by termite protists. Meanwhile, it appears prior reports of GHF62 in the termite gut may have been misidentified GHF43 sequences. GHF43 was the only GHF found to contain sequences from the protists not found in the termite gut. These findings generally all support the possibility termite-associated protists adapted to a lignocellulosic diet after colonization of the termite hindgut. Nonetheless, the poor resolution of GHF phylogeny and limited termite and protist sampling constrain interpretation.
ContributorsSanderlin, Viola (Author) / Gile, Gillian H (Thesis advisor) / Wojciechowski, Martin (Committee member) / Weiss, Taylor (Committee member) / Varman, Arul Mozhy (Committee member) / Arizona State University (Publisher)
Created2019