Matching Items (2)
Filtering by

Clear all filters

156370-Thumbnail Image.png
Description
A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB)

A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB) domain, while also performing a separate gene modification using a 20-nt gRNA targeted to a reporter vector. DNA Ligase IV (LIGIV) was chosen as the target for gene repression, given its role in nonhomologous end joining, a common DNA repair process that competes with the more precise homology-directed repair (HDR).

To test for gene editing, a 20-nt gRNA was designed to target a disrupted enhanced green fluorescent protein (EGFP) gene present in a reporter vector. After the gRNA introduced a double-stranded break, cells attempted to repair the cut site via HDR using a DNA template within the reporter vector. In the event of successful gene editing, the EGFP sequence was restored to a functional state and green fluorescence was detectable by flow cytometry. To achieve gene repression, a 14-nt gRNA was designed to target LIGIV. The gRNA included a com protein recruitment domain, which recruited a Com-KRAB fusion protein to facilitate gene repression via chromatin modification of LIGIV. Quantitative polymerase chain reaction was used to quantify repression.

This study expanded upon earlier advancements, offering a novel and versatile approach to genetic modification and transcriptional regulation using CRISPR/Cas9. The overall results show that both gene editing and repression were occurring, thereby providing support for a novel CRISPR/Cas system capable of simultaneous gene modification and regulation. Such a system may enhance the genome engineering capabilities of researchers, benefit disease research, and improve the precision with which gene editing is performed.
ContributorsChapman, Jennifer E (Author) / Kiani, Samira (Thesis advisor) / Ugarova, Tatiana (Thesis advisor) / Marchant, Gary (Committee member) / Arizona State University (Publisher)
Created2018
136002-Thumbnail Image.png
Description
Platelets are specialized blood cells that play crucial role in normal physiologic and pathologic processes such as hemostasis, inflammation, wound healing, and host defense. Activation of platelets is essential for platelet function and it includes a complex interplay of adhesion and intracellular signaling molecules. Platelets are known to be activated

Platelets are specialized blood cells that play crucial role in normal physiologic and pathologic processes such as hemostasis, inflammation, wound healing, and host defense. Activation of platelets is essential for platelet function and it includes a complex interplay of adhesion and intracellular signaling molecules. Platelets are known to be activated during vessel injury by a complex interaction of soluble agonists and once activated, they adhere to sub-endothelial matrix to aggregate and secrete granules leading to the formation of platelet aggregate that is necessary for thrombus formation. Platelet integrin plays a central role in platelet adhesive reactions by serving as a receptor for fibrinogen involved in bidirectional transmembrane signaling. In order to elucidate the interaction of integrin with cytoplasmic signaling molecules during inside-out and outside-in signaling, we have studied the kinetics of the recruitment of talin, kindling, filmin-A, skelemin, Scr and syk to the B3 cytoplasmic tails. Platelets were isolated from human blood and activated with ADP/Epinephrine for different times. The complexes of *** with signaling proteins were obtained by immunoprecipitation of platelet lysates with anit-*** monoclonal antibody and then analyzed by Western blotting using antibodies directed against selected signaling proteins. Our results show different kinetics in recruitment of signaling molecules to the B3 integrin cytoplasmic tail during inside-out and outside in signaling.
ContributorsYantas, Alexa Susan (Author) / Ugarova, Tatiana (Thesis director) / Podolnikova, Nataly (Committee member) / Turaga, Ramya (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05