Matching Items (3)
Filtering by

Clear all filters

154128-Thumbnail Image.png
Description
Recognition of algae as a “Fit for Purpose” biomass and its potential as an energy and bio-product resource remains relatively obscure. This is due to the absence of tailored and unified production information necessary to overcome several barriers for commercial viability and environmental sustainability. The purpose of this research was

Recognition of algae as a “Fit for Purpose” biomass and its potential as an energy and bio-product resource remains relatively obscure. This is due to the absence of tailored and unified production information necessary to overcome several barriers for commercial viability and environmental sustainability. The purpose of this research was to provide experimentally verifiable estimates for direct energy and water demand for the algal cultivation stage which yields algal biomass for biofuels and other bio-products. Algal biomass productivity was evaluated using different cultivation methods in conjunction with assessment for potential reduction in energy and water consumption for production of fuel and feed. Direct water and energy demands are the major focal sustainability metrics in hot and arid climates and are influenced by environmental and operational variables connected with selected algal cultivation technologies. Evaporation is a key component of direct water demand for algal cultivation and directly related to variations in temperature and relative humidity. Temperature control strategies relative to design and operational variables were necessary to mitigate overheating of the outdoor algae culture in panel photobioreactors and sub-optimal cultivation temperature in open pond raceways. Mixing in cultivation systems was a major component in direct energy demand that was provided by aeration in panel bioreactors and paddlewheels in open pond raceways. Management of aeration time to meet required biological interactions provides opportunities for reduced direct energy demand in panel photobioreactors. However, the potential for reduction in direct energy demand in raceway ponds is limited to hydraulics and head loss. Algal cultivation systems were reviewed for potential integration into dairy facilities in order to determine direct energy demand and nutrient requirements for algal biomass production for animal feed. The direct energy assessment was also evaluated for key components of related energy and design parameters for conventional raceway ponds and a gravity fed system. The results of this research provide a platform for selecting appropriate production scenarios with respect to resource use and to ensure a cost effective product with the least environmental burden.
ContributorsBadvipour, Shahrzad (Author) / Sommerfeld, Milton (Thesis advisor) / Downes, Meghan (Committee member) / Abbott, Joshua (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2015
161900-Thumbnail Image.png
Description
As India expanded its grid infrastructure, decentralized renewable energy technologies, such as off-grid solar, also emerged in parallel as an electrification solution. This dissertation critically examines the role of off-grid solar in facilitating rural electrification efforts in India. Specifically, it applies the frameworks of the multi-level perspective, capabilities approach, and

As India expanded its grid infrastructure, decentralized renewable energy technologies, such as off-grid solar, also emerged in parallel as an electrification solution. This dissertation critically examines the role of off-grid solar in facilitating rural electrification efforts in India. Specifically, it applies the frameworks of the multi-level perspective, capabilities approach, and energy justice to achieve three objectives: (1) trace the evolution of off-grid solar in India; (2) understand the role of solar micro-grids in improving household capabilities and well-being; (1) examine whether and how community-scale solar micro-grids can operate as just means of electrification. This research relies on qualitative case-study methods. The historical research in Paper 1 is based on published policy documents and interviews with energy experts in India. It finds that landscape-regime-niche actor relations and politics were crucial in shaping off-grid solar transition outcomes. There is also a narrative component, as the key narratives of energy security, environmental degradation, climate change and energy for development converged to create spaces for state and non-state interactions that could nurture the development of off-grid solar. The community-level research in Papers 2 and 3 analyze a local energy initiative of community operated solar micro-grid using semi-structured interviews and participant observations from three villages in Maharashtra. Solar micro-grids play an important part in expanding people’s choices and opportunities. The benefits are not uniform across all people, however. Increases in energy-related capabilities vary by economic class and gender, and to some extent this means certain biases can get reinforced. In addition, the inability of solar micro-grids to keep up with the changing electrification landscape and daily practices means that the challenges of affordability, reliability and community engagement emerged as important concerns over-time. Empirically, this dissertation finds that off-grid energy initiatives must be carefully designed to be in alignment with local values and realities. Theoretically, it adds to debates on justice in energy transitions by showcasing the regime-led innovations, and temporality elements of energy justice local energy initiatives.
ContributorsRajagopalan, Sushil (Author) / Breetz, Hanna (Thesis advisor) / Klinsky, Sonja (Thesis advisor) / Singh, Kartikeya (Committee member) / Arizona State University (Publisher)
Created2021
156901-Thumbnail Image.png
Description
Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission

Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission at high spatial resolution is essential to both carbon science and mitigation policy. Though considerable research has been accomplished within a few high-income portions of the planet such as the United States and Western Europe, little work has attempted to comprehensively quantify high-resolution on-road FFCO2 emissions globally. Key questions for such a global quantification are: (1) What are the driving factors for on-road FFCO2 emissions? (2) How robust are the relationships? and (3) How do on-road FFCO2 emissions vary with urban form at fine spatial scales?

This study used urban form/socio-economic data combined with self-reported on-road FFCO2 emissions for a sample of global cities to estimate relationships within a multivariate regression framework based on an adjusted STIRPAT model. The on-road high-resolution (whole-city) regression FFCO2 model robustness was evaluated by introducing artificial error, conducting cross-validation, and assessing relationship sensitivity under various model specifications. Results indicated that fuel economy, vehicle ownership, road density and population density were statistically significant factors that correlate with on-road FFCO2 emissions. Of these four variables, fuel economy and vehicle ownership had the most robust relationships.

A second regression model was constructed to examine the relationship between global on-road FFCO2 emissions and urban form factors (described by population

ii

density, road density, and distance to activity centers) at sub-city spatial scales (1 km2). Results showed that: 1) Road density is the most significant (p<2.66e-037) predictor of on-road FFCO2 emissions at the 1 km2 spatial scale; 2) The correlation between population density and on-road FFCO2 emissions for interstates/freeways varies little by city type. For arterials, on-road FFCO2 emissions show a stronger relationship to population density in clustered cities (slope = 0.24) than dispersed cities (slope = 0.13). FFCO2 3) The distance to activity centers has a significant positive relationship with on-road FFCO2 emission for the interstate and freeway toad types, but an insignificant relationship with the arterial road type.
ContributorsSong, Yang (Author) / Gurney, Kevin (Thesis advisor) / Kuby, Michael (Committee member) / Golub, Aaron (Committee member) / Chester, Mikhail (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2018