Matching Items (10)
Filtering by

Clear all filters

151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
ContributorsMoncada, Albert (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2012
152982-Thumbnail Image.png
Description
Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range of sensors and detection techniques, for both metallic materials and composites. However, detecting damage at the microscale is not possible with commercially available sensors. A probable way to approach this problem is through accurate and efficient multiscale modeling techniques, which are capable of tracking damage initiation at the microscale and propagation across the length scales. The output from these models will provide an improved understanding of damage initiation; the knowledge can be used in conjunction with information from physical sensors to improve the size of detectable damage. In this research, effort has been dedicated to develop multiscale modeling approaches and associated damage criteria for the estimation of damage evolution across the relevant length scales. Important issues such as length and time scales, anisotropy and variability in material properties at the microscale, and response under mechanical and thermal loading are addressed. Two different material systems have been studied: metallic material and a novel stress-sensitive epoxy polymer.

For metallic material (Al 2024-T351), the methodology initiates at the microscale where extensive material characterization is conducted to capture the microstructural variability. A statistical volume element (SVE) model is constructed to represent the material properties. Geometric and crystallographic features including grain orientation, misorientation, size, shape, principal axis direction and aspect ratio are captured. This SVE model provides a computationally efficient alternative to traditional techniques using representative volume element (RVE) models while maintaining statistical accuracy. A physics based multiscale damage criterion is developed to simulate the fatigue crack initiation. The crack growth rate and probable directions are estimated simultaneously.

Mechanically sensitive materials that exhibit specific chemical reactions upon external loading are currently being investigated for self-sensing applications. The "smart" polymer modeled in this research consists of epoxy resin, hardener, and a stress-sensitive material called mechanophore The mechanophore activation is based on covalent bond-breaking induced by external stimuli; this feature can be used for material-level damage detections. In this work Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is used as the cyclobutane-based mechanophore (stress-sensitive) material in the polymer matrix. The TCE embedded polymers have shown promising results in early damage detection through mechanically induced fluorescence. A spring-bead based network model, which bridges nanoscale information to higher length scales, has been developed to model this material system. The material is partitioned into discrete mass beads which are linked using linear springs at the microscale. A series of MD simulations were performed to define the spring stiffness in the statistical network model. By integrating multiple spring-bead models a network model has been developed to represent the material properties at the mesoscale. The model captures the statistical distribution of crosslinking degree of the polymer to represent the heterogeneous material properties at the microscale. The developed multiscale methodology is computationally efficient and provides a possible means to bridge multiple length scales (from 10 nm in MD simulation to 10 mm in FE model) without significant loss of accuracy. Parametric studies have been conducted to investigate the influence of the crosslinking degree on the material behavior. The developed methodology has been used to evaluate damage evolution in the self-sensing polymer.
ContributorsZhang, Jinjun (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2014
153470-Thumbnail Image.png
Description
Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent

Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent covers and refractive index prior to develop a solar water heater with improved optical efficiency and thermal efficiency for the collector. Numerical simulation is conducted on the performance of the liquid flat plate collector for July 21st and October 21st from 8 am to 4 pm with different refractive index values 1.1, 1.4, 1.7 and different numbers of transparent covers (0-3). In order to accomplish the proposed method the formulation and solutions are executed using simple software MATLAB. The result demonstrates efficiency of flat plate collector increases with the increase of number of covers. The performance of collector decreases when refractive index is higher. The improved useful heat gain is obtained when number of cover used is 3 and refractive index is 1.1.
ContributorsSupriti, Shahina Parvin (Author) / Rogers, Bradley (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2015
150798-Thumbnail Image.png
Description
Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal

Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal processing, pattern recognition, data mining, high fidelity probabilistic progressive damage models, physics based damage models, and regression analysis. Due to the wide application of carbon fiber reinforced composites and their multiscale failure mechanisms, it is necessary to emphasize the research of SHM on composite structures. This research develops a comprehensive framework for the damage detection, localization, quantification, and prediction of the remaining useful life of complex composite structures. To interrogate a composite structure, guided wave propagation is applied to thin structures such as beams and plates. Piezoelectric transducers are selected because of their versatility, which allows them to be used as sensors and actuators. Feature extraction from guided wave signals is critical to demonstrate the presence of damage and estimate the damage locations. Advanced signal processing techniques are employed to extract robust features and information. To provide a better estimate of the damage for accurate life estimation, probabilistic regression analysis is used to obtain a prediction model for the prognosis of complex structures subject to fatigue loading. Special efforts have been applied to the extension of SHM techniques on aerospace and spacecraft structures, such as UAV composite wings and deployable composite boom structures. Necessary modifications of the developed SHM techniques were conducted to meet the unique requirements of the aerospace structures. The developed SHM algorithms are able to accurately detect and quantify impact damages as well as matrix cracking introduced.
ContributorsLiu, Yingtao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Rajadas, John (Committee member) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
150007-Thumbnail Image.png
Description
Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation

Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation of such a system requires a collaborative research effort in a variety of areas such as novel sensing techniques, robust algorithms for damage interrogation, high fidelity probabilistic progressive damage models, and hybrid residual life estimation models. This dissertation focuses on the sensing and damage estimation aspects of this multidisciplinary topic for application in metallic and composite material systems. The primary means of interrogating a structure in this work is through the use of Lamb wave propagation which works well for the thin structures used in aerospace applications. Piezoelectric transducers (PZTs) were selected for this application since they can be used as both sensors and actuators of guided waves. Placement of these transducers is an important issue in wave based approaches as Lamb waves are sensitive to changes in material properties, geometry, and boundary conditions which may obscure the presence of damage if they are not taken into account during sensor placement. The placement scheme proposed in this dissertation arranges piezoelectric transducers in a pitch-catch mode so the entire structure can be covered using a minimum number of sensors. The stress distribution of the structure is also considered so PZTs are placed in regions where they do not fail before the host structure. In order to process the data from these transducers, advanced signal processing techniques are employed to detect the presence of damage in complex structures. To provide a better estimate of the damage for accurate life estimation, machine learning techniques are used to classify the type of damage in the structure. A data structure analysis approach is used to reduce the amount of data collected and increase computational efficiency. In the case of low velocity impact damage, fiber Bragg grating (FBG) sensors were used with a nonlinear regression tool to reconstruct the loading at the impact site.
ContributorsCoelho, Clyde (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Wu, Tong (Committee member) / Das, Santanu (Committee member) / Rajadas, John (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
153633-Thumbnail Image.png
Description
Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a

Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and geometric variability in polymer matrix composites, and provide an accurate and computational efficient modeling scheme for simulating guided wave excitation, propagation, interaction with damage, and sensing in a range of materials. The methodologies presented in this research represent substantial progress toward the development of an accurate and generalized virtual SHM framework.
ContributorsBorkowski, Luke (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Mignolet, Marc (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2015
154502-Thumbnail Image.png
Description
Testing was conducted for a solar assisted water heater and conventional all electric water heater for the purpose of investigating the advantages of utilizing solar energy to heat up water. The testing conducted simulated a four person household living in the Phoenix, Arizona region. With sensors and a weather station,

Testing was conducted for a solar assisted water heater and conventional all electric water heater for the purpose of investigating the advantages of utilizing solar energy to heat up water. The testing conducted simulated a four person household living in the Phoenix, Arizona region. With sensors and a weather station, data was gathered and analyzed for the water heaters. Performance patterns were observed that correlated to ambient conditions and functionality of the solar assisted water heater. This helped better understand how the solar water heater functioned and how it may continue to function. The testing for the solar assisted water heater was replicated with the all-electric water heater. One to one analyzes was conducted for comparison. The efficiency and advantages were displayed by the solar assisted water heater having a 61% efficiency. Performance parameters were calculated for the solar assisted water heater and it showed how accurate certified standards are. The results showed 8% difference in performance, but differed in energy savings. This further displayed the effects of uncontrollable ambient conditions and the effects of different testing conditions.
ContributorsMartínez, Luis, active 1995 (Author) / Rajadas, John (Thesis advisor) / Kannan, Arunachala (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
154407-Thumbnail Image.png
Description
With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy,

With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy, wind energy and hydroelectric power. This thesis

focuses on developing a concentrating solar thermal energy unit for the application

of an on-demand hot water system with phase change material. This system already

has a prototype constructed and needs refinement in several areas in order to

increase its efficiency to determine if the system could ever reach a point of

feasibility in a residential application. Having put additional control refining

systems on the solar water heat collector, it can be deduced that the efficiency has

increased. However, due to limited testing and analysis it is undetermined just how

much the efficiency of the system has increased. At minimum, the capabilities of the

research platform have dramatically increased, allowing future research to more

accurately study the dynamics of the system as well as conduct studies in more

targeted areas of engineering. In this aspect, the thesis was successful.
ContributorsDonovan, Benjamin (Author) / Rajadas, John (Thesis advisor) / Kannan, Arunachala (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
154595-Thumbnail Image.png
Description
All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing

All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development.

The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally.

Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering.

The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns.

Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts.
ContributorsKim, Inho (Author) / Chattopadhyay, Aditi (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Mignolet, Marc (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2016
154829-Thumbnail Image.png
Description
There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a

There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a variety of areas such as sensor development, damage detection and localization, physics based models, and prognosis models for residual useful life (RUL) estimation. Damage localization and prediction is further complicated by geometric, material, loading, and environmental variabilities. Therefore, it is essential to develop robust SHM methodologies by taking into account such uncertainties. In this research, damage localization and RUL estimation of two different physical systems are addressed: (i) fatigue crack propagation in metallic materials under complex multiaxial loading and (ii) temporal scour prediction near bridge piers. With little modifications, the methodologies developed can be applied to other systems.

Current practice in fatigue life prediction is based on either physics based modeling or data-driven methods, and is limited to predicting RUL for simple geometries under uniaxial loading conditions. In this research, crack initiation and propagation behavior under uniaxial and complex biaxial fatigue loading is addressed. The crack propagation behavior is studied by performing extensive material characterization and fatigue testing under in-plane biaxial loading, both in-phase and out-of-phase, with different biaxiality ratios. A hybrid prognosis model, which combines machine learning with physics based modeling, is developed to account for the uncertainties in crack propagation and fatigue life prediction due to variabilities in material microstructural characteristics, crack localization information and environmental changes. The methodology iteratively combines localization information with hybrid prognosis models using sequential Bayesian techniques. The results show significant improvements in the localization and prediction accuracy under varying temperature.

For civil infrastructure, especially bridges, pier scour is a major failure mechanism. Currently available techniques are developed from a design perspective and provide highly conservative scour estimates. In this research, a fully probabilistic scour prediction methodology is developed using machine learning to accurately predict scour in real-time under varying flow conditions.
ContributorsNeerukatti, Rajesh Kumar (Author) / Chattopadhyay, Aditi (Thesis advisor) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2016