Matching Items (403)
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
153332-Thumbnail Image.png
Description
In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in

In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in aqueous solution. Research work conducted for this dissertation has demonstrated that EICP can be employed for a variety of geotechnical purposes, including mass soil stabilization, columnar soil stabilization, and stabilization of erodible surficial soils. The research presented herein also shows that the optimal ratio of urea to CaCl2 at ionic strengths of less than 1 molar is approximately 1.75:1. EICP solutions of very high initial ionic strength (i.e. 6 M) as well as high urea concentrations (> 2 M) resulted in enzyme precipitation (salting-out) which hindered carbonate precipitation. In addition, the production of NH4+ may also result in enzyme precipitation. However, enzyme precipitation appeared to be reversible to some extent. Mass soil stabilization was demonstrated via percolation and mix-and-compact methods using coarse silica sand (Ottawa 20-30) and medium-fine silica sand (F-60) to produce cemented soil specimens whose strength improvement correlated with CaCO3 content, independent of the method employed to prepare the specimen. Columnar stabilization, i.e. creating columns of soil cemented by carbonate precipitation, using Ottawa 20-30, F-60, and native AZ soil was demonstrated at several scales beginning with small columns (102-mm diameter) and culminating in a 1-m3 soil-filled box. Wind tunnel tests demonstrated that surficial soil stabilization equivalent to that provided by thoroughly wetting the soil can be achieved through a topically-applied solution of CaCl2, urea, and the urease enzyme. The topically applied solution was shown to form an erosion-resistant CaCO3 crust on fine sand and silty soils. Cementation of erodible surficial soils was also achieved via EICP by including a biodegradable hydrogel in the stabilization solution. A dilute hydrogel solution extended the time frame over which the precipitation reaction could occur and provided improved spatial control of the EICP solution.
ContributorsHamdan, Nasser M (Author) / Kavazanjian Jr., Edward (Thesis advisor) / Rittmann, Bruce (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2015
151241-Thumbnail Image.png
Description
Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific to tumor cells provide an opportunity to develop noninvasive clinical tests and further our understanding of tumor biology. Using liquid chromatography-mass spectrometry (LC-MS/MS) a short peptide was identified in pancreatic cancer patient plasma that was not found in normal samples, and mapped back to QSOX1 protein. Immunohistochemistry was performed probing for QSOX1 in tumor tissue and discovered that QSOX1 is highly over-expressed in pancreatic and breast tumors. QSOX1 is a FAD-dependent sulfhydryl oxidase that is extremely efficient at forming disulfide bonds in nascent proteins. While the enzymology of QSOX1 has been well studied, the tumor biology of QSOX1 has not been studied. To begin to determine the advantage that QSOX1 over-expression provides to tumors, short hairpin RNA (shRNA) were used to reduce the expression of QSOX1 in human tumor cell lines. Following the loss of QSOX1 growth rate, apoptosis, cell cycle and invasive potential were compared between tumor cells transduced with shQSOX1 and control tumor cells. Knock-down of QSOX1 protein suppressed tumor cell growth but had no effect on apoptosis and cell cycle regulation. However, shQSOX1 dramatically inhibited the abilities of both pancreatic and breast tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, shQSOX1-transduced tumor cells secreted MMP-2 and -9 that were less active than MMP-2 and -9 from control cells. Taken together, these results suggest that the mechanism of QSOX1-mediated tumor cell invasion is through the post-translational activation of MMPs. This dissertation represents the first in depth study of the role that QSOX1 plays in tumor cell biology.
ContributorsKatchman, Benjamin A (Author) / Lake, Douglas F. (Thesis advisor) / Rawls, Jeffery A (Committee member) / Miller, Laurence J (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2012
157235-Thumbnail Image.png
Description
Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and

Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and shuttle electrons to a flavin adenine dinucleotide (FAD) cofactor that accepts the electrons and reduces molecular oxygen to hydrogen peroxide. Investigation of the role of QSOX1 in cancer progression started when it was found at higher abundance in pancreatic ductal adenocarcinoma (PDA) patient plasma compared to healthy normal donor plasma. Increased expression in QSOX1 has been further identified in breast, lung, kidney, prostate, and other cancers. QSOX1 expression is associated with cell proliferation and invasion in vitro and tumor growth in vivo. Additionally, the enzymatic activity of QSOX1 in the extracellular matrix (ECM) is important for cell invasion in vitro. Small molecule inhibitors of QSOX1 have been shown to have antitumorigenic properties in vitro and in vivo. It was hypothesized that monoclonal antibodies (mAbs) against QSOX1 would inhibit cell invasion in vitro. In this work, mice were immunized with eukaryotic-derived rQSOX1 for generation of hybridomas. Hundreds of hybridoma clones were screened by enzyme-linked immunosorbent assay (ELISA) and a fluorescent QSOX1 activity assay. Multiple rounds of subcloning and screening identified 2F1.14 and 3A10.6 as mAbs of interest. The genes for the variable regions of the antibodies were rescued and sequenced. The sequences were aligned with the variable region sequences of another published αQSOX1 mAb scFv492.1. 2F1.14 inhibits the enzymatic activity of QSOX1 by binding to the active site of QSOX1, which was determined by epitope mapping against mutants of QSOX1 that contained mutations in the active site. 3A10.6 did not appear to inhibit the function of QSOX1 in the activity assay; however, it, along with 2F1.14, suppressed tumor invasion in a 3D invasion model. These findings support the developing idea that QSOX1 is a viable target for cancer treatment because targeted inhibition of QSOX1 extracellularly reduced invasive activity. The mAbs and rQSOX1 variants produced here can serve as tools in furthering the characterization of QSOX1 and its role in cancer.
ContributorsKoelbel, Calvin John (Author) / Lake, Douglas (Thesis advisor) / Chen, Qiang "Shawn" (Committee member) / Ho, Thai (Committee member) / Arizona State University (Publisher)
Created2019
156935-Thumbnail Image.png
Description
The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within

The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within the treated soil. These methods are referred to as microbial induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP). The precipitation of carbonate is the formation of crystalline minerals that fill the void spaces within a body of soil.

This thesis investigates the application of EICP in a soil collected from the Arizona State University Polytechnic campus. The surficial soil in the region is known to be a clayey sand. Both EICP and MICP have their limitations in soils consisting of a significant percentage of fines. Fine-grained soils have a greater surface area which requires the precipitation of a greater amount of carbonate to increase the soil’s strength. EICP was chosen due to not requiring any living organisms during the application, having a faster reaction rate and size constraints.

To determine the effectiveness of EICP as a method of improving a soil with a significant amount of fines, multiple comparisons were made: 1) The soil’s strength was analyzed on its own, untreated; 2) The soil was treated with EICP to determine if bio-cementation can strengthen the soil; 3) The soil had sand added to reduce the fines content and was treated with EICP to determine how the fines percentage effects the strength of a soil when treated with EICP.

While the EICP treatment increased the strength of the soil by over 3-fold, the strength was still relatively low when compared to results of other case studies treating sandy soils. More research could be done with triaxial testing due to the samples of the Polytechnic soil’s strength coming from capillarity.
ContributorsRoss, Johnathan (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Hamdan, Nasser (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
136443-Thumbnail Image.png
Description
Due to a continued interest in the fundamental properties of dihydrofolate reductase (DHFR) and its enzymatic activities, this study employed the use of six fluorescent tryptophan derivatives, for single site amino acid replacements. The two positions 30 and 47 within DHFR were studied to discover the rate at which these

Due to a continued interest in the fundamental properties of dihydrofolate reductase (DHFR) and its enzymatic activities, this study employed the use of six fluorescent tryptophan derivatives, for single site amino acid replacements. The two positions 30 and 47 within DHFR were studied to discover the rate at which these larger tryptophan analogues may be incorporated. Additionally, it was to be determined how much activity the mutated DHFR’s could retain when compared to their wild type counterpart. Through a review of literature, it was shown that previous studies have illustrated successful incorporation and toleration of unnatural amino acids.
Each of the six analogues A through F were relatively efficiently incorporated into the enzyme and well tolerated. Each maintained at least a third of their catalytic activity, measured through the consumption of β-nicotinamide adenine dinucleotide phosphate. Primarily, derivatives B, C, and D were able to retain the highest amount of activity in each position; B and D were the most tolerated in positions 30 and 47 with respective values of 68 ± 6.1 and 80 ± 12. The findings in this study illustrate that single tryptophan derivatives are able to be incorporated into Escherichia coli DHFR while still allowing the maintenance of a significant portion of its enzymatic activity.
ContributorsBaldwin, Edwin Alexander (Author) / Hecht, Sidney (Thesis director) / Chen, Shengxi (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136872-Thumbnail Image.png
Description
Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found

Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found to contain one Cu2+ per subunit. For many years, it was thought that the B. subtilis quercetinase contained two Fe2+ ions per subunit; however, it has since been discovered that Mn2+ is a much more likely cofactor. Studies of overexpressed bacterial enzyme in E. coli indicated that this enzyme may be active with other metal ions (e.g. Co2+); however, the production of enzyme with full metal incorporation has only been possible with Mn2+. This study explores the notion that metal manipulation after translation, by partially unfolding the enzyme, chelating the metal ions, and then refolding the protein in the presence of an excess of divalent metal ions, could generate enzyme with full metal occupancy. The protocols presented here included testing for activity after incubating purified quercetinase with EDTA, DDTC, imidazole and GndHCl. It was found that the metal chelators had little to no effect on quercetinase activity. Imidazole did appear to inhibit the enzyme at concentrations in the millimolar range. In addition, the quercetinase was denatured in GndHCl at concentrations above 1 M. Recovering an active enzyme after partial or complete unfolding proved difficult, if not impossible.
ContributorsKrojanker, Elan Daniel (Author) / Francisco, Wilson (Thesis director) / Allen, James P. (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
Description
This dissertation investigates the potential for enzyme induced carbonate cementation as an alternative to Portland cement for creating building material from sand aggregate. We create a solution of urease enzyme, calcium chloride (CaCl2), and urea in water and added sand. The urease catalyzes the synthesis of carbonate from urea, and

This dissertation investigates the potential for enzyme induced carbonate cementation as an alternative to Portland cement for creating building material from sand aggregate. We create a solution of urease enzyme, calcium chloride (CaCl2), and urea in water and added sand. The urease catalyzes the synthesis of carbonate from urea, and the carbonate then bonds with a dissociated calcium ion and precipitates from the solution as calcium carbonate (CaCO3). This precipitate can form small crystal bridges at contacts between sand grains that lock the sand grains in place. Using enzyme induced carbonate precipitation we created a cemented sand sample with a maximum compressive strength of 319 kPa and an elastic modulus of approximately 10 MPa. Images from the SEM showed that a major failure mechanism in the cemented samples was the delamination of the CaCO3 from the sand grains. We observed that CaCO3 cementation did not when solutions with high concentrations of CaCl2 and urea were used.
ContributorsBull, Michael Ryan (Author) / Kavazanjian, Edward (Thesis director) / Chawla, Nikhilesh (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05