Matching Items (10)
Filtering by

Clear all filters

136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description

Falls are known to be a common occurrence and a costly one as well, as they are the second leading cause of unintentional deaths and millions of other injuries worldwide. Falls often occur due to an increase in trunk flexion angle, so this experiment aims to reduce the trunk flexion

Falls are known to be a common occurrence and a costly one as well, as they are the second leading cause of unintentional deaths and millions of other injuries worldwide. Falls often occur due to an increase in trunk flexion angle, so this experiment aims to reduce the trunk flexion received while stepping over an obstacle. To achieve this a soft actuator was attached to the trunk and pressure was sent as subjects walked and stepped over an obstacle presented on a treadmill. The pressure is meant to stiffen the back which should in theory reduce the trunk flexion angle and lower the chances of falling. In this experiment, two groups were tested: three participants from a control group (healthy young adults) and three participants from an experimental group (healthy elderly adults). Since elderly adults have the highest fall risk due to overall lack of stability, they are the experimental group and the focus for this experiment. The results from the study showed that elderly adults had a beneficial effect with the soft actuator as there was a noticeable difference in trunk flexion when the device was attached. The experiment also supported prior research that stated that trunk flexion was greater in elderly adults than younger adults. Despite the positive results, further studies should be done to prove that the soft devices influence lowering trunk flexion angle as well as to see if the device has any noticeable effect on younger adults.

ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsFisher, Caleb (Author) / Lee, Hyunglae (Thesis director) / Olivas, Alyssa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05