Matching Items (13)
Filtering by

Clear all filters

155595-Thumbnail Image.png
Description
While predicting completion in Massive Open Online Courses (MOOCs) has been an active area of research in recent years, predicting completion in self-paced MOOCS, the fastest growing segment of open online courses, has largely been ignored. Using learning analytics and educational data mining techniques, this study examined data generated by

While predicting completion in Massive Open Online Courses (MOOCs) has been an active area of research in recent years, predicting completion in self-paced MOOCS, the fastest growing segment of open online courses, has largely been ignored. Using learning analytics and educational data mining techniques, this study examined data generated by over 4,600 individuals working in a self-paced, open enrollment college algebra MOOC over a period of eight months.

Although just 4% of these students completed the course, models were developed that could predict correctly nearly 80% of the time which students would complete the course and which would not, based on each student’s first day of work in the online course. Logistic regression was used as the primary tool to predict completion and focused on variables associated with self-regulated learning (SRL) and demographic variables available from survey information gathered as students begin edX courses (the MOOC platform employed).

The strongest SRL predictor was the amount of time students spent in the course on their first day. The number of math skills obtained the first day and the pace at which these skills were gained were also predictors, although pace was negatively correlated with completion. Prediction models using only SRL data obtained on the first day in the course correctly predicted course completion 70% of the time, whereas models based on first-day SRL and demographic data made correct predictions 79% of the time.
ContributorsCunningham, James Allan (Author) / Bitter, Gary (Thesis advisor) / Barber, Rebecca (Committee member) / Douglas, Ian (Committee member) / Arizona State University (Publisher)
Created2017
156227-Thumbnail Image.png
Description
The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college

The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college algebra and pre-calculus classes at a community college in the southwestern United States. The approximate demographics of this college as of the academic year 2016 – 2017 are as follows: 53% women, 47% men; 61% ages 24 and under, 39% 25 and over; 43% Hispanic/Latino, 40% White, 7% other. Participants listened to an approximately 9-minute video lecture on solving a logarithmic equation. There were four dependent variables: encoding as measured by a posttest – pretest difference, perceived cognitive effort, attitude, and notes-quality/quantity. The perceived cognitive effort was measured by a self-reported questionnaire. The attitude was measured by an attitude survey. The note-quality/quantity measure included three sub-measures: expected mathematical expressions, expected phrases, and a total word count. There were two independent factors: note-taking method and learner control. The note-taking method had three levels: the Learning Agenda (LA), unguided note-taking (Usual), and no notes taken. The learner control factor had two levels: pausing allowed and pausing not allowed. The LA resulted in significantly improved notes on all three sub-measures (adjusted R2 = .298). There was a significant main effect of learner control on perceived cognitive effort with higher perceived cognitive effort occurring when pausing was not allowed and notes were taken. There was a significant interaction effect of the two factors on the attitude survey measure. The trend toward an improved attitude in both of the note-taking levels of the note-taking factor when pause was allowed was reversed in the no notes level when pausing was allowed. While significant encoding did occur as measured by the posttest – pretest difference (Cohen’s d = 1.81), this measure did not reliably vary across the levels of either the note-taking method factor or the learner control factor in this study. Interpretations were in terms of cognitive load management, split-attention, instructional design, and note-taking as a sense-making opportunity.
ContributorsTarr, Julie Charlotte (Author) / Nelson, Brian (Thesis advisor) / Atkinson, Robert (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2018
Description
Mark and Paupert concocted a general method for producing presentations for arithmetic non-cocompact lattices, \(\Gamma\), in isometry groups of negatively curved symmetric spaces. To get around the difficulty of constructing fundamental domains in spaces of variable curvature, their method invokes a classical theorem of Macbeath applied to a \(\Gamma\)-invariant

Mark and Paupert concocted a general method for producing presentations for arithmetic non-cocompact lattices, \(\Gamma\), in isometry groups of negatively curved symmetric spaces. To get around the difficulty of constructing fundamental domains in spaces of variable curvature, their method invokes a classical theorem of Macbeath applied to a \(\Gamma\)-invariant covering by horoballs of the negatively curved symmetric space upon which \(\Gamma\) acts. This thesis aims to explore the application of their method to the Picard modular groups, PU\((2,1;\mathcal{O}_{d})\), acting on \(\mathbb{H}_{\C}^2\). This document contains the derivations for the group presentations corresponding to \(d=2,11\), which completes the list of presentations for Picard modular groups whose entries lie in Euclidean domains, namely those with \(d=1,2,3,7,11\). There are differences in the method's application when the lattice of interest has multiple cusps. \(d = 5\) is the smallest value of \(d\) for which the corresponding Picard modular group, \(\PU(2,1;\mathcal{O}_5)\), has multiple cusps, and the method variations become apparent when working in this case.
ContributorsPolletta, David Michael (Author) / Paupert, Julien H (Thesis advisor) / Kotschwar, Brett (Committee member) / Fishel, Susanna (Committee member) / Kawski, Matthias (Committee member) / Childress, Nancy (Committee member) / Arizona State University (Publisher)
Created2021