Matching Items (6)
Description
SparkLED designs innovative and intelligent LED products to concert attendees for the music industry (specifically, electronic dance music). Unlike other LED product distributors/manufacturers, such as emazinglights.com, orbitlightshow.com, and led-clothing.com, we offer products with higher degrees of customization, while maintaining higher quality, such as battery life and product durability. Our venture

SparkLED designs innovative and intelligent LED products to concert attendees for the music industry (specifically, electronic dance music). Unlike other LED product distributors/manufacturers, such as emazinglights.com, orbitlightshow.com, and led-clothing.com, we offer products with higher degrees of customization, while maintaining higher quality, such as battery life and product durability. Our venture aims to solve the problem that consumers have with current LED product offerings. In most cases, consumers have a problem with the quality of their products while they are used throughout the day at a concert, club, or festival. In addition, with an over saturated market of LED product vendors that strictly utilize online channels, we hope to offer the physical channel needed to foster customer relationships and development at various events.
ContributorsYip, Indy Boyin (Author) / Trappen, Eric (Thesis director) / Peck, Sidnee (Committee member) / Barrett, The Honors College (Contributor) / Department of Management (Contributor) / Department of Information Systems (Contributor)
Created2014-05
154907-Thumbnail Image.png
Description
Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via molecular epitaxy of Ge5H12. Next, As(GeH3)3, As(SiH3)3, SbD3, S(GeH3)2 and S(SiH3)2 molecular sources were utilized in degenerate n-type doping of

Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via molecular epitaxy of Ge5H12. Next, As(GeH3)3, As(SiH3)3, SbD3, S(GeH3)2 and S(SiH3)2 molecular sources were utilized in degenerate n-type doping of Ge. The epitaxial Ge films produced in this work incorporate donor atoms at concentrations above the thermodynamic equilibrium limits. The donors are nearly fully activated, and led to films with lowest resistivity values thus far reported.

Band engineering of Ge was achieved by alloying with Sn. Epitaxy of the alloy layers was conducted on virtual Ge substrates, and made use of the germanium hydrides Ge2H6 and Ge3H8, and the Sn source SnD4. These films exhibit stronger emission than equivalent material deposited directly on Si, and the contributions from the direct and indirect edges can be separated. The indirect-direct crossover composition for Ge1-ySny alloys was determined by photoluminescence (PL). By n-type doping of the Ge1-ySny alloys via P(GeH3)3, P(SiH3)3 and As(SiH3)3, it was possible to enhance photoexcited emission by more than an order-of-magnitude.

The above techniques for deposition of direct gap Ge1-ySny alloys and doping of Ge were combined with p-type doping methods for Ge1-ySny using B2H6 to fabricate pin heterostructure diodes with active layer compositions up to y=0.137. These represent the first direct gap light emitting diodes made from group IV materials. The effect of the single defected n-i¬ interface in a n-Ge/i-Ge1-ySny/p-Ge1-zSnz architecture on electroluminescence (EL) was studied. This led to lattice engineering of the n-type contact layer to produce diodes of n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architecture which are devoid of interface defects and therefore exhibit more efficient EL than the previous design. Finally, n-Ge1-ySny/p-Ge1-zSnz pn junction devices were synthesized with varying composition and doping parameters to investigate the effect of these properties on EL.
ContributorsSenaratne, Charutha Lasitha (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2016
155906-Thumbnail Image.png
Description
Light Emitting Diodes even with their longer life, robust build and low power consumption, they are still plagued by some problems the most significant of which are the current droop and thermal droop. Current droop causes a lowering in the Internal Quantum Efficiency with increased current injection while thermal droo

Light Emitting Diodes even with their longer life, robust build and low power consumption, they are still plagued by some problems the most significant of which are the current droop and thermal droop. Current droop causes a lowering in the Internal Quantum Efficiency with increased current injection while thermal droop lowers the whole Internal Quantum Efficiency curve with increase in temperature. The focus here was understanding effects of thermal droop and develop a method to control it.

Shockley Read Hall recombination plays a dominant role in the thermal droop effect when the current injection is low. Since the blue light emitting diode is based on Gallium Nitride, we need to take into consideration the effect of piezoelectric polarization in the quantum wells. The effects of the piezoelectric fields were studied based on the Gallium Nitride plane orientations. It was found in a Gallium Nitride light emitting diodes simulation study that more the number of quantum wells, lower would be the Radiative recombination rate. The problem of exacerbated spatial separation of electron hole wavefunctions in a thick single quantum well structure lead to the development of a dual well structure where one well assisted the other during high temperature operations. The Electron Blocking Layer was reduced in thickness and was made only 10 nm thick with a 5 nm Gallium Nitride buffer between it and the active region wells. The main reason for reducing the electron blocking layer thickness was to reduce the valance band offset and improve hole transport into the active region. Three different dual well designs were simulated of 3nm, 6nm and 9nm wide wells. The output parameters like the Power Spectral Density, Electron bound density, Light Output Power and Electron-Hole wavefunction overlaps were calculated. It was found that one of the wells acted as an assisting well where it had very little radiative recombination activity in it at room temperature.

As the temperature increased, it was observed that the electrons in the main well started to overflow out of it and into the assisting well where the radiative recombination rate increased significantly. This lead to a boost in Internal Quantum Efficiency.
ContributorsDas, Shiladitya (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Ning, Cun-Zheng (Committee member) / Arizona State University (Publisher)
Created2017
149377-Thumbnail Image.png
Description
As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for

As the world energy demand increases, semiconductor devices with high energy conversion efficiency become more and more desirable. The energy conversion consists of two distinct processes, namely energy generation and usage. In this dissertation, novel multi-junction solar cells and light emitting diodes (LEDs) are proposed and studied for high energy conversion efficiency in both processes, respectively. The first half of this dissertation discusses the practically achievable energy conversion efficiency limit of solar cells. Since the demonstration of the Si solar cell in 1954, the performance of solar cells has been improved tremendously and recently reached 41.6% energy conversion efficiency. However, it seems rather challenging to further increase the solar cell efficiency. The state-of-the-art triple junction solar cells are analyzed to help understand the limiting factors. To address these issues, the monolithically integrated II-VI and III-V material system is proposed for solar cell applications. This material system covers the entire solar spectrum with a continuous selection of energy bandgaps and can be grown lattice matched on a GaSb substrate. Moreover, six four-junction solar cells are designed for AM0 and AM1.5D solar spectra based on this material system, and new design rules are proposed. The achievable conversion efficiencies for these designs are calculated using the commercial software package Silvaco with real material parameters. The second half of this dissertation studies the semiconductor luminescence refrigeration, which corresponds to over 100% energy usage efficiency. Although cooling has been realized in rare-earth doped glass by laser pumping, semiconductor based cooling is yet to be realized. In this work, a device structure that monolithically integrates a GaAs hemisphere with an InGaAs/GaAs quantum-well thin slab LED is proposed to realize cooling in semiconductor. The device electrical and optical performance is calculated. The proposed device then is fabricated using nine times photolithography and eight masks. The critical process steps, such as photoresist reflow and dry etch, are simulated to insure successful processing. Optical testing is done with the devices at various laser injection levels and the internal quantum efficiency, external quantum efficiency and extraction efficiency are measured.
ContributorsWu, Songnan (Author) / Zhang, Yong-Hang (Thesis advisor) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Belitsky, Andrei (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2010
135759-Thumbnail Image.png
Description
The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving

The apparent phenomenon of the human eye retaining images for fractions of a second after the light source has gone is known as Persistence of Vision. While its causes are not fully understood, it can be taken advantage of in order to create illusions which trick the mind into perceiving something which, in actuality, is very different from what the mind portrays. It has motivated many creative engineering technologies in the past and is the core for how we perceive motion in movies and animations. This project applies the persistence of vision concept to a lesser explored medium; the wheel of a moving bicycle. The motion of the wheel, along with intelligent control of discrete LEDs, create vibrant illusions of solid lines and shapes. These shapes make up the image to be displayed on the bike wheel. The rotation of the bike wheel can be compensated for in order to produce a standing image (or images) of the user's choosing. This thesis details how the mechanism for conducting the individual LEDs was created in order to produce a device which is capable of delivering colorful, standing images of the user's choosing.
ContributorsSaltwick, Ian Mark (Author) / Goryll, Michael (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157733-Thumbnail Image.png
Description
A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant,

A Fundamental study of bulk, layered, and monolayers bromide lead perovskites structural, optical, and electrical properties have been studied as thickness changes. X-Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter showing how the difference in the thicknesses changes the crystal structures through observing changes in average lattice constant, atomic spacing, and lattice vibrations.

Optical and electrical properties have also been studied mainly focusing on the thickness effect on different properties where the Photoluminescence (PL) and exciton binding energies show energy shift as thickness of the material changes. Temperature dependent PL has shown different characteristics when comparing methylammonium lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different lifetimes as thickness of bromide-based perovskite changes. Finally, thickness dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide (BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential relation between the thickness of the materials and their surface potentials.
ContributorsAlenezi, Omar (Author) / Tongay, Sefaattin (Thesis advisor) / King, Richard (Thesis advisor) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2019