Matching Items (4)
Filtering by

Clear all filters

152535-Thumbnail Image.png
Description
Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision making before they encounter real life

Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision making before they encounter real life patients. The utility of a recursive, inductive VPS for increasing clinical decision-making skills, collaboration, or engagement is unknown. Following a design-based methodology, VPS were implemented in two phases with two different cohorts of first year medical students: spring and fall of 2013. Participants were 108 medical students and six of their clinical faculty tutors. Students collaborated in teams of three to complete a series of virtual patient cases, submitting a ballpark diagnosis at the conclusion of each session. Student participants subsequently completed an electronic, 28-item Exit Survey. Finally, students participated in a randomized controlled trial comparing traditional (tutor-led) and VPS case instruction methods. This sequence of activities rendered quantitative and qualitative data that were triangulated during data analysis to increase the validity of findings. After practicing through four VPS cases, student triad teams selected accurate ballpark diagnosis 92 percent of the time. Pre-post test results revealed that PPT was significantly more effective than VPS after 20 minutes of instruction. PPT instruction resulted in significantly higher learning gains, but both modalities supported significant learning gains in clinical reasoning. Students collaborated well and held rich clinical discussions; the central phenomenon that emerged was "synthesizing evidence inductively to make clinical decisions." Using an inductive process, student teams collaborated to analyze patient data, and in nearly all instances successfully solved the case, while remaining cognitively engaged. This is the first design-based study regarding virtual patient simulation, reporting iterative phases of implementation and design improvement, culminating in local theories (petite generalizations) about VPS design. A thick, rich description of environment, process, and findings may benefit other researchers and institutions in designing and implementing effective VPS.
ContributorsMcCoy, Lise (Author) / Wetzel, Keith (Thesis advisor) / Ewbank, Ann (Thesis advisor) / Simon, Harvey (Committee member) / Arizona State University (Publisher)
Created2014
187447-Thumbnail Image.png
Description
The diverse weevil genus Rhyssomatus Schoenherr, 1837 (Curculionidae: Molytinae: Cleoginini) is currently composed of 175 species throughout the New World (O’Brien et. al 1982; Wibmer et. al 1986). The majority of species are generalist feeders and the group contains many notorious agricultural pests, such as Rhyssomatus nigerimus Fahraeus 1837 and

The diverse weevil genus Rhyssomatus Schoenherr, 1837 (Curculionidae: Molytinae: Cleoginini) is currently composed of 175 species throughout the New World (O’Brien et. al 1982; Wibmer et. al 1986). The majority of species are generalist feeders and the group contains many notorious agricultural pests, such as Rhyssomatus nigerimus Fahraeus 1837 and R. subtillis Fiedler 1937 that cause thousands of dollars’ worth of crop damage in South America, Central America, and West Indies (Cazado, 2016; Lopez-Guillen, et. al). Although most notable as a crop pest in the literature, the species Rhyssomatus maginatus Fahraeus has also proven to be a great success in an Integrated Pest Management (IPM), controlling the invasive leguminous tree Sesbenia punicea (Cav.) Benth., in South Africa. (Hoffman & Moran 1991; 1992; 1998; 1999). The last century has seen revisions of the Neotropical species with Central American species revised in 1904 by Champion and the South American taxa treated by Fiedler in the subsequent years of 1937 and 1942 (O’Brien & Wibmer, 1982; Wibmer & O’Brien, 1986). However, North American fauna have not been treated since Casey in 1895 and revision is needed as climate change and global trade have more than likely expanded the distributional range of previously lower latitude Rhyssomatus species northwards.
ContributorsArguez, Katherine MacKenzie (Author) / Franz, Nico (Thesis advisor) / Pigg, Kathleen (Committee member) / Gile, Gillian (Committee member) / Arizona State University (Publisher)
Created2023
157762-Thumbnail Image.png
Description
Weevils are one of the most diverse groups of animals with thousands of species suspected to remain undiscovered. The Conoderinae Schoenherr, 1833 are no exception, being especially diverse and unknown in the Neotropics where they are recognizable for their unique behaviors and color patterns among weevils. Despite these peculiarities, the

Weevils are one of the most diverse groups of animals with thousands of species suspected to remain undiscovered. The Conoderinae Schoenherr, 1833 are no exception, being especially diverse and unknown in the Neotropics where they are recognizable for their unique behaviors and color patterns among weevils. Despite these peculiarities, the group has received little attention from researchers in the past century, with almost nothing known about their evolution. This dissertation presents a series of three studies that begin to elucidate the evolutionary history of these bizarre and fascinating weevils, commencing with an overview of their biology and classificatory history (Chapter 1).

Chapter 2 presents the first formal cladistic analysis on the group to redefine the New World tribes Lechriopini Lacordaire, 1865 and Zygopini, Lacordaire, 1865. An analysis of 75 taxa (65 ingroup) with 75 morphological characters yielded six equally parsimonious trees and synapomorphies that are used to reconstitute the tribes, resulting in the transfer of sixteen genera from the Zygopini to the Lechriopini and four generic transfers out of the Lechriopini to elsewhere in the Conoderinae.

Chapter 3 constitutes a taxonomic revision of the genus Trichodocerus Chevrolat, 1879, the sole genus in the tribe Trichodocerini Champion, 1906, which has had an uncertain phylogenetic placement in the Curculionidae but has most recently been treated in the Conoderinae. In addition to redescriptions of the three previously described species placed in the genus, twenty-four species are newly described and an identification key is provided for all recognized species groups and species.

Chapter 4 quantitatively tests the similarity in color pattern among species hypothesized to belong to several different mimicry complexes. The patterns of 160 species of conoderine weevils were evaluated for 15 categorical and continuous characters. Non-metric multidimensional scaling (NMDS) is used to visualize similarity by the proximity of individual species and clusters of species assigned to a mimicry complex in ordination space with clusters being statistically tested using permutational multivariate analysis of variance (PERMANOVA).
ContributorsAnzaldo, Salvatore (Author) / Franz, Nico (Thesis advisor) / Martins, Emilia (Committee member) / Rabeling, Christian (Committee member) / Pigg, Kathleen (Committee member) / Arizona State University (Publisher)
Created2019
161507-Thumbnail Image.png
Description
Today’s science education has been highly criticized in the United States despite reform efforts that attempt to promote more wholistic and integrated goals for teaching and learning science, which include both the understanding of key content and the acquisition of scientific skills. Outdoor education may be a means with which

Today’s science education has been highly criticized in the United States despite reform efforts that attempt to promote more wholistic and integrated goals for teaching and learning science, which include both the understanding of key content and the acquisition of scientific skills. Outdoor education may be a means with which to better engage students in science, but educators often find this type of teaching difficult to adopt for a variety of reasons. Nature journaling may be a useful access point to outdoor education for teachers experiencing those barriers. This study examines a six-month implementation of nature journaling activities in a high school Ecology & Animal Behavior course. It was found that students completing nature journaling in this classroom utilized both scientific knowledge and scientific practices in their work, and that instances and depth of these demonstrations increased as a general trend over time, which may be considered successful learning according to situativity theory. Further, students communicated their understanding of what they were accomplishing through their journal work as highly beneficial, though their own perceptions of their competencies in scientific practices did not change. Though additional research needs to be conducted, this study points to a potentially positive relationship between modern science education and outdoor learning through nature journal activities.
ContributorsSuloff, Sarah (Author) / Weinberg, Andrea (Thesis advisor) / Jordan, Michelle (Committee member) / Franz, Nico (Committee member) / Arizona State University (Publisher)
Created2021