Matching Items (2)
Filtering by

Clear all filters

135614-Thumbnail Image.png
Description
Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base flow) and during rain events (storm flow). In this study,

Accidental wetlands have been created on the bed of the Salt River and are fed by storm-water outfalls discharging at various sections of the Phoenix Metropolitan Area. Water discharges from these outfalls throughout the year, during both dry conditions (base flow) and during rain events (storm flow). In this study, DOC content and composition was studied during these two flow conditions, in the outfalls and along the wetland flow path. The importance of DOC lies in its role in transporting carbon via water movement, between different parts of a landscape, and therefore between pools in the ecosystem. Urbanization has influenced content and composition of DOC entering the accidental urban wetland via outfalls as they represent watersheds from different areas in Phoenix. First, DOC load exhibited higher quantities during stormflow compared to baseflow conditions. Second, DOC load and fluorescence analysis outcomes concluded the outfalls are different from each other. The inputs of water on the north side of the channel represent City of Phoenix watersheds were similar to each other and had high DOC load. The northern outfalls are both different in load and composition from the outfall pipe on the southern bank of the wetland as it represents South Mountain watershed. Fluorescence analysis results also concluded compositional changes occurred along the wetland flow path during both stormflow and baseflow conditions. In this study, it was explored how urbanization and the associated changes in hydrology and geomorphology have affected a desert wetland's carbon content.
ContributorsBone, Stephanie Rosalia (Author) / Hartnett, Hilairy (Thesis director) / Palta, Monica (Committee member) / Mascaro, Giuseppe (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023