Matching Items (2)
Filtering by

Clear all filters

135590-Thumbnail Image.png
Description
This study demonstrates that a polymer and drug conjugate can be tattooed onto tissue and deliver drug in a sustained manner. A number of polymers and drugs were investigated in this study in the aims of developing a formulation that could achieve sustained drug delivery for 1-2 weeks. The polymers

This study demonstrates that a polymer and drug conjugate can be tattooed onto tissue and deliver drug in a sustained manner. A number of polymers and drugs were investigated in this study in the aims of developing a formulation that could achieve sustained drug delivery for 1-2 weeks. The polymers selected for testing were PDLG 5004, PDLLA-Glycerol, and PEG-PLA, and the drugs used in conjunction with these polymers were rifampicin, moxifloxacin, and dexamethasone. Varying formulas containing these polymer and drug combinations were tattooed onto three different tissue types: bovine pericardial tissue, porcine corneal tissue, and porcine sclera tissue. The drug release rates from these tattoos were determined and characterized after studying the release for up to 20 days. The release rate of dexamethasone from both PDLG 5004 and PDLLA-Glycerol when tattooed onto bovine pericardial tissue demonstrated the best release rate of the formulations tested, with up to 14 days of sustained release. This preliminary research into tattoo-based, polymeric drug delivery is promising, and has the possibility to be developed into a beneficial form of ophthalmic drug delivery that could be expanded to other areas of treatment as well.
ContributorsKaplan, Serena Louise (Author) / Vernon, Brent (Thesis director) / Pathak, Chandrashekhar (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
161830-Thumbnail Image.png
Description
Technology transfer hurdles constantly keep effective medical treatment from healthcare. One prevalent hurdle is that of cost. Regulation from any organization or entity can drive up cost and requires thorough review before implementation. For microspheres specifically, extensive research has been conducted to minimize variation in size. How variation effects drug

Technology transfer hurdles constantly keep effective medical treatment from healthcare. One prevalent hurdle is that of cost. Regulation from any organization or entity can drive up cost and requires thorough review before implementation. For microspheres specifically, extensive research has been conducted to minimize variation in size. How variation effects drug delivery of microspheres, however, has not been studied in depth. In this study, a preliminary approach to modeling drug delivery in microspheres with a given log-normal distribution is reported. A design of experiment statistical analysis was performed using incremental values of mean and standard deviation. To estimate the rate of drug diffusing from the microspheres, a simplified Fick's second law was used. Various data types were considered and it was found that the shape factors which are related to mean and standard deviation fit the statistical analysis best. Using the shape factor data type, equation characteristics were identified and reported. It was seen that standard deviation has a greater influence on drug delivery than mean. A prediction expression is presented that can be used to identify the time it takes to get to 60% drug delivery and can be used in a scaled manner.
ContributorsNickle, Jacob Aaron (Author) / Vernon, Brent (Thesis advisor) / McLemore, Ryan (Committee member) / Beeman, Scott (Committee member) / Arizona State University (Publisher)
Created2021