Matching Items (2)
Filtering by

Clear all filters

153179-Thumbnail Image.png
Description
This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of

This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy.

Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC.

Battery testing based on [EMI+][FeCl4-] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4+][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements.

Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121oC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.
ContributorsTucker, Telpriore G (Author) / Angell, Charles A. (Committee member) / Moore, Ana (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2014
171596-Thumbnail Image.png
Description
The movement of energy within a material is at the heart of numerous fundamental properties of chemistry and physics. Studying the process of photo-absorption in real time provides key insights into how energy is captured, stabilized, and dissipated within a material. The work presented in this thesis uses ultrafast time-of-flight

The movement of energy within a material is at the heart of numerous fundamental properties of chemistry and physics. Studying the process of photo-absorption in real time provides key insights into how energy is captured, stabilized, and dissipated within a material. The work presented in this thesis uses ultrafast time-of-flight mass spectrometry and computational modeling to observe and understand the properties of photo-excited states within molecules and clusters. Experimental results provide direct measurement of excited state lifetimes, while computational modeling provides a more thorough understanding of the movement of energy within an excited state. Excited state dynamics in covalent molecules such as n-butyl bromide (C4H9Br), presented in Chapter 4, demonstrate the significance of IVR of photo-excited states. Exciting to the high energy Rydberg manifold leads to predissociation into fragments of various lengths and degrees of saturation but the predissociation process is disrupted by energy redistribution into hot vibrational states. Experimental lifetimes show that IVR occurs over rapidly (~ 600 fs) leaving less energy for bond dissociation. Additionally, a long-lived feature in the dynamics of C4H9+ shows evidence of ion-pair formation – a known phenomenon which creates a stable A+/B- pair separated by several angstroms and occurring at energies lower than direct ionization. The results of this research show the dynamics of energy transfer into bond fragmentation, kinetic energy, and vibrational motion. Metal-oxide clusters are unique materials which are representative of bulk materials but with quantized excited states instead of bands and as such can be used as atomically precise analogs to semiconducting materials. Excited state lifetimes and theoretical descriptors of electron-hole interactions of titanium oxide clusters, presented in Chapter 5, shows the significance of structure and oxidation of charge-transfer materials. Modeling the excited states of the photo-generated electrons and holes provides a window into the dynamics of charge-transfer and electron-hole separation and recombination in bulk materials. Furthermore, changes in the oxidation of the cluster have a dramatic impact on the nature of excited states and overall cluster properties. Such changes are analogous to oxygen defects in bulk materials and are critical for understanding reaction chemistry at defect sites.
ContributorsHeald, Lauren (Author) / Sayres, Scott G (Thesis advisor) / Seo, Dong-Kyun (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2022