Matching Items (6)
Filtering by

Clear all filters

153818-Thumbnail Image.png
Description
Despite recent strides for awareness, treatment, and control of hypertension, prevalence remains high with estimates suggesting one third of Americans have hypertension. The hypotensive effects of potassium and magnesium have been known and administered in a clinical setting for nearly a century. The purpose of this study was to examine

Despite recent strides for awareness, treatment, and control of hypertension, prevalence remains high with estimates suggesting one third of Americans have hypertension. The hypotensive effects of potassium and magnesium have been known and administered in a clinical setting for nearly a century. The purpose of this study was to examine the effectiveness of taking a potassium/magnesium supplement to help reduce blood pressure in individuals with mildly-moderately elevated blood pressure. In this randomized, controlled crossover trial, potassium and magnesium supplementation was explored among healthy adults with mildly elevated blood pressure in Phoenix, Arizona. Subjects (n = 12) were randomly assigned to ingest either the treatment chewy bar (217 mg potassium/day; 70.8 mg magnesium/day) or a placebo chewy bar for four weeks. For the subsequent four weeks, subjects ingested the other corresponding chewy bar. Systolic (SBP), diastolic (DBP), and average blood pressure values were not significantly different between the two groups (p = 0.645, p = 0.464 and p = 0.939, respectively). Baseline mean blood pressure was 121.0/75.7 mm Hg. The 12 subjects (8 females, 4 males) had a mean age of 29.3 years old and a mean BMI of 26.2. After four weeks, the treatment group had a slightly higher SBP (118.3 ± 13.3 mm Hg) than the control group (116.5 ± 17.8 mm Hg); however, DBP was lower in the treatment group (71.7 ± 12.4 mm Hg) than the control group (73.0 ± 10.0 mm Hg). In conclusion, daily supplementation of potassium and magnesium (217.2 mg/day and 70.8 mg/day, respectively) did not significantly lower blood pressure in adults with mildly-moderately elevated blood pressure.
ContributorsPawloski, Jason (Author) / Johnston, Carol (Thesis advisor) / Vega-Lopez, Sonia (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2015
157494-Thumbnail Image.png
Description
This dissertation details a study of wide-bandgap molecular beam epitaxy (MBE)-grown single-crystal MgxCd1-xTe. The motivation for this study is to open a pathway to reduced $/W solar power generation through the development of a high-efficiency 1.7-eV II-VI top cell current-matched to low-cost 1.1-eV silicon. This paper reports the demonstration of

This dissertation details a study of wide-bandgap molecular beam epitaxy (MBE)-grown single-crystal MgxCd1-xTe. The motivation for this study is to open a pathway to reduced $/W solar power generation through the development of a high-efficiency 1.7-eV II-VI top cell current-matched to low-cost 1.1-eV silicon. This paper reports the demonstration of monocrystalline 1.7-eV MgxCd1-xTe/MgyCd1-yTe (y>x) double heterostructures (DHs) with a record carrier lifetime of 560 nanoseconds, along with a 1.7-eV MgxCd1-xTe/MgyCd1-yTe (y>x) single-junction solar cell with a record active-area efficiency of 15.2% and a record open-circuit voltage (VOC) of 1.176 V. A study of indium-doped n-type 1.7-eV MgxCd1-xTe with a carrier activation of up to 5 × 1017 cm-3 is presented with promise to increase device VOC. Finally, this paper reports an epitaxial lift-off (ELO) technology using water-soluble MgTe for the creation of free-standing MBE-grown II-VI single-crystal CdTe and 1.7-eV MgxCd1-xTe solar cells freed from lattice-matched InSb(001) substrates. Photoluminescence (PL) spectroscopy measurements comparing intact and free-standing films reveal the survival of optical quality in CdTe DHs after ELO. This technology opens up several possibilities to drastically increase cell conversion efficiency through improved light management and transferability into monolithic multijunction devices. Lastly, this report will present considerations for future work in each of the study areas mentioned above.
ContributorsCampbell, Calli Michele (Author) / Zhang, Yong-Hang (Thesis advisor) / Chan, Candance K (Committee member) / King, Richard R (Committee member) / Arizona State University (Publisher)
Created2019
156808-Thumbnail Image.png
Description
In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As a lightweight material of interest, Mg-xAl alloys were studied using aqueous free corrosion, atmospheric corrosion, dissolution rate kinetics, and ionic

In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As a lightweight material of interest, Mg-xAl alloys were studied using aqueous free corrosion, atmospheric corrosion, dissolution rate kinetics, and ionic liquid dissolution. Polarization and “accelerated” free corrosion studies in aqueous chloride were used to characterize the corrosion behavior and morphology of alloys. Atmospheric corrosion experiments revealed surface roughness and pH evolution behavior in aqueous environment. Dissolution in absence of water using choline-chloride:urea ionic liquid allowed for a simpler dissolution mechanism to be observed, providing additional insights regarding surface mobility of Al. These results were compared with commercial alloy (AZ31B, AM60, and AZ91D) behavior to better elucidate effects associated with secondary phases and intermetallic particles often present in Mg alloys. Aqueous free corrosion, “accelerated” free corrosion and ionic liquid dissolution studies have confirmed Al surface enrichment in a variety of morphologies, including Al-rich platelet and Al nanowire formation. This behavior is attributed to the preferential dissolution of Al as the more “noble” element in the matrix. Inductively-coupled mass spectroscopy was used to measure first-order rate reaction constants for elemental Mg and Al dissolution in aqueous chloride environment to be kMg= 9.419 x 10-6 and kAl = 2.103 x 10-6 for future implementation in kinetic Monte Carlo simulations. To better understand how “stainless-like” passivation may be achieved, Ni-xCr alloys were studied using polarization and potential pulse experiments. The passivation potential, critical current density, and passivation current density were found to decay with increasing Cr composition. The measured average number of monolayers dissolved during passivation was found to be in good agreement with percolation theory, with a fitted 3-D percolation threshold of p_c^3D=0.118 compared with the theoretical value of 0.137. Using these results, possible approaches towards achieving passivation in other systems, including Mg-Al, are discussed.
ContributorsAiello, Ashlee (Author) / Sieradzki, Karl (Thesis advisor) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2018
154600-Thumbnail Image.png
Description
A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today’s state of the art battery technologies fail to meet the desired metrics for full scale

A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today’s state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6).

The work presented here explores the compatibility of magnesium electrolytes in TFSI–-based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI– contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved.

The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg electrodeposition are also given.
ContributorsWatkins, Tylan Strike (Author) / Buttry, Daniel A (Thesis advisor) / Wolf, George (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2016
155558-Thumbnail Image.png
Description
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of

Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.
ContributorsBecker, Jacob J (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2017
135507-Thumbnail Image.png
Description
In 2015, the United States consumed about 140.43 billion gallons of gasoline, resulting in the emission of over 1 billion metric tons of carbon dioxide, according to the U.S. Energy Information Administration. Despite continued efforts to develop more efficient engines and cleaner fuels, a major barrier to reducing energy consumption

In 2015, the United States consumed about 140.43 billion gallons of gasoline, resulting in the emission of over 1 billion metric tons of carbon dioxide, according to the U.S. Energy Information Administration. Despite continued efforts to develop more efficient engines and cleaner fuels, a major barrier to reducing energy consumption and CO2 production is the mass of the vehicle. Replacing traditional automotive materials such as iron and steel with lighter-weight materials is a big step toward improving fuel economy. Magnesium has great potential for use in the automotive industry because of its low density, about 78% less than the density of steel, and high strength-to-weight ratio. Using cast magnesium instead of steel can reduce the overall weight of a vehicle, improving performance and increasing fuel efficiency. However, magnesium’s high susceptibility to corrosion limits its feasibility as a substitute for traditional materials.

This project aimed to understand the effects of composition and phase distribution on the corrosion behavior of magnesium-aluminum (Mg-Al) alloys in an ionic liquid electrolyte. The purpose of studying corrosion in nonaqueous ILs is to determine the anodic dissolution behaviors of the alloy phases without the interference of side reactions that occur in aqueous electrolytes, such as di-oxygen or water reduction. Three commercial Mg-Al alloys were studied: AZ91D (9% Al), AM60 (6% Al), and AZ31B (3% Al). An annealed alloy containing solid-solution α-phase Mg-Al with 5 at% aluminum content (Mg5Al) was also used. The ionic liquid chosen for this project was 1:2 molar ratio choline-chloride:urea (cc-urea), a deep eutectic solvent. After potentiostatic corrosion in cc-urea, the magnesium alloys were found to form a high surface area porous morphology as corrosion duration increased. This morphology consists of aluminum-rich ridges formed by Al nanowires surrounding an aluminum-poor base area, but with an overall increase in surface Al composition, indicating selective dealloying of the Mg in cc-urea and redistribution of the Al on the surface. Further work will focus on the development of hydrophobic coatings using ionic liquids.
ContributorsWeiss, Anna Caroline (Author) / Sieradzki, Karl (Thesis director) / Chan, Candace (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05