Matching Items (17)
Filtering by

Clear all filters

152940-Thumbnail Image.png
Description
Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings

Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings to the treatment of PTE, one of which is the use of anticonvulsant medication to the population of TBI patients that are not likely to develop PTE. The complication of identifying the two populations has been hindered by the ability to find a marker to the pathogenesis of PTE. The central hypothesis of this dissertation is that following TBI, the cortex undergoes distinct cellular and synaptic reorganization that facilitates cortical excitability and promotes seizure development. Chapter 2 of this dissertation details excitatory and inhibitory changes in the rat cortex after severe TBI. This dissertation aims to identify cortical changes to a single cell level after severe TBI using whole cell patch clamp and electroencephalogram electrophysiology. The work of this dissertation concluded that excitatory and inhibitory synaptic activity in cortical controlled impact (CCI) animals showed the development of distinct burst discharges that were not present in control animals. The results suggest that CCI induces early "silent" seizures that are detectable on EEG and correlate with changes to the synaptic excitability in the cortex. The synaptic changes and development of burst discharges may play an important role in synchronizing the network and promoting the development of PTE.
ContributorsNichols, Joshua (Author) / Anderson, Trent (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2014
156603-Thumbnail Image.png
Description
The ability to detect and appropriately respond to chemical stimuli is important for many organisms, ranging from bacteria to multicellular animals. Responses to these stimuli can be plastic over multiple time scales. In the short-term, the synaptic strengths of neurons embedded in neural circuits can be modified and result in

The ability to detect and appropriately respond to chemical stimuli is important for many organisms, ranging from bacteria to multicellular animals. Responses to these stimuli can be plastic over multiple time scales. In the short-term, the synaptic strengths of neurons embedded in neural circuits can be modified and result in various forms of learning. In the long-term, the overall developmental trajectory of the olfactory network can be altered and synaptic strengths can be modified on a broad scale as a direct result of long-term (chronic) stimulus experience. Over evolutionary time the olfactory system can impose selection pressures that affect the odorants used in communication networks. On short time scales, I measured the effects of repeated alarm pheromone exposure on the colony-level defense behaviors in a social bee. I found that the responses to the alarm pheromone were plastic. This suggests that there may be mechanisms that affect individual plasticity to pheromones and regulate how these individuals act in groups to coordinate nest defense. On longer time scales, I measured the behavioral and neural affects of bees given a single chronic odor experience versus bees that had a natural, more diverse olfactory experience. The central brains of bees with a deprived odor experience responded more similarly to odorants in imaging studies, and did not develop a fully mature olfactory network. Additionally, these immature networks showed behavioral deficits when recalling odor mixture components. Over evolutionary time, signals need to engage the attention of and be easily recognized by bees. I measured responses of bees to a floral mixture and its constituent monomolecular components. I found that natural floral mixtures engage the orientation of bees’ antennae more strongly than single-component odorants and also provide more consistent central brain responses between stimulations. Together, these studies highlight the importance of olfactory experience on different scales and how the nervous system might impose pressures to select the stimuli used as signals in communication networks.
ContributorsJernigan, Christopher (Author) / Smith, Brian H. (Thesis advisor) / Newbern, Jason (Committee member) / Harrisoin, Jon (Committee member) / Rutowski, Ronald (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
157392-Thumbnail Image.png
Description
With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender ga

With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender gap is closing due to more advanced screening and a better understanding of how females with ASD present their symptoms. Little research has been published on the neurocognitive differences that exist between older adults with ASD compared to neurotypical (NT) counterparts, and nothing has specifically addressed older women with ASD. This study utilized neuroimaging and neuropsychological tests to examine differences between diagnosis and sex of four distinct groups: older men with ASD, older women with ASD, older NT men, and older NT women. In each group, hippocampal size (via FreeSurfer) was analyzed for differences as well as correlations with neuropsychological tests. Participants (ASD Female, n = 12; NT Female, n = 14; ASD Male, n = 30; NT Male = 22), were similar according to age, IQ, and education. The results of the study indicated that the ASD Group as a whole performed worse on executive functioning tasks (Wisconsin Card Sorting Test, Trails Making Test) and memory-related tasks (Rey Auditory Verbal Learning Test, Weschler Memory Scale: Visual Reproduction) compared to the NT Group. Interactions of sex by diagnosis approached significance only within the WCST non-perseverative errors, with the women with ASD performing worse than NT women, but no group differences between men. Effect sizes between the female groups (ASD female vs. NT female) showed more than double that of the male groups (ASD male vs. NT male) for all WCST and AVLT measures. Participants with ASD had significantly smaller right hippocampal volumes than NT participants. In addition, all older women showed larger hippocampal volumes when corrected for total intracranial volume (TIV) compared to all older men. Overall, NT Females had significant correlations across all neuropsychological tests and their hippocampal volumes whereas no other group had significant correlations. These results suggest a tighter coupling between hippocampal size and cognition in NT Females than NT Males and both sexes with ASD. This study promotes further understanding of the neuropsychological differences between older men and women, both with and without ASD. Further research is needed on a larger sample of older women with and without ASD.
ContributorsWebb, Christen Len (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2019
155573-Thumbnail Image.png
Description
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed E3 ubiquitin ligase (UBE3A, also known as E6 associated protein, E6-AP) in neurons. Currently, the mechanism on how loss-of-function of

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed E3 ubiquitin ligase (UBE3A, also known as E6 associated protein, E6-AP) in neurons. Currently, the mechanism on how loss-of-function of the enzyme influences the nervous system development remains unknown. We hypothesize that impaired metabolism of proteins, most likely those related to E6-AP substrates, may alter the developmental trajectory of neuronal structures including dendrites, spines and synaptic proteins, which leads to disrupted activity/experience-dependent synaptic plasticity and maturation. To test this hypothesis, we conducted a detailed investigation on neuronal morphology and electrophysiological properties in the prefrontal cortex (PFC) layer 5 (L5) corticostriatal pyramidal neurons (target neurons). We found smaller soma size in the maternal Ube3a deficient mice (m-/p+; 'AS' mice) at postnatal 17-19 (P17-19), P28-35 and older than 70 days (>P70), and decreased basal dendritic processes at P28-35. Surprisingly, both excitatory and inhibitory miniature postsynaptic currents (mEPSCs and mIPSCs) decreased on these neurons. These neurons also exhibited abnormalities in the local neural circuits, short-term synaptic plasticity and AMPA/NMDA ratio: the excitatory inputs from L2/3 and L5A, and inhibitory inputs from L5 significantly reduced in AS mice from P17-19; Both the release probability (Pr) and readily-releasable vesicle (RRV) pool replenishment of presynaptic neurons of the target neurons were disrupted at P17-19 and P28-35, and the change of RRV pool replenishment maintained through adulthood (>P70). The AMPA/NMDA ratio showed abnormality in the L5 corticostriatal neurons of PFC in AS mice older than P28-35, during which it decreased significantly compared to that of age-matched WT littermates. Western Blot analysis revealed that the expression level of a key regulator of the cytoskeleton system, Rho family small GTPase cell division control protein 42 homolog (cdc42), reduced significantly in the PFC of AS mice at P28-35.These impairments of synaptic transmission and short-term synaptic plasticity may account for the impaired neuronal morphology and synaptic deficits observed in the PFC target neurons, and contribute to the phenotypes in AS model mice. The present work reveals for the first time that the E6-AP deficiency influences brain function in both brain region-specific and age-dependent ways, demonstrates the functional impairment at the neural circuit level, and reveals that the presynaptic mechanisms are disrupted in AS model. These novel findings shed light on our understanding of the AS pathogenesis and inform potential novel therapeutic explorations.
ContributorsLi, Guohui (Author) / Qiu, Shenfeng (Thesis advisor) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2017
135492-Thumbnail Image.png
Description
This pilot study evaluated whether Story Champs and Puente de Cuentos helped bilingual preschoolers increase their usage of emotional terms and ability to tell stories. Participants in this study included 10 Spanish-English bilingual preschoolers. Intervention was conducted in 9 sessions over 3 days using the Test of Narrative Retell to

This pilot study evaluated whether Story Champs and Puente de Cuentos helped bilingual preschoolers increase their usage of emotional terms and ability to tell stories. Participants in this study included 10 Spanish-English bilingual preschoolers. Intervention was conducted in 9 sessions over 3 days using the Test of Narrative Retell to measure results. Results did not find significant gains in either emotional term usage or ability to tell stories, but the results were promising as a pilot study.
ContributorsSato, Leslie Mariko (Author) / Restrepo, Maria (Thesis director) / Dixon, Maria (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
189241-Thumbnail Image.png
Description
The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed that ALS and FTD reside along a spectrum with clinical

The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed that ALS and FTD reside along a spectrum with clinical and pathological commonalities. Historically understood as diseases resulting in neuronal death, the role of non-neuronal cells like astrocytes is still wholly unresolved. With evidence of cortical neurodegeneration leading to cognitive impairments in C9orf72-ALS/FTD, there is a need to investigate the role of cortical astrocytes in this disease spectrum. Here, a patient-derived induced pluripotent stem cell (iPSC) cortical astrocyte model was developed to investigate consequences of C9orf72-HRE pathogenic features in this cell type. Although there were no significant C9orf72-HRE pathogenic features in cortical astrocytes, transcriptomic, proteomic and phosphoproteomic profiles elucidated global disease-related phenotypes. Specifically, aberrant expression of astrocytic-synapse proteins and secreted factors were identified. SPARCL1, a pro-synaptogenic secreted astrocyte factor was found to be selectively decreased in C9orf72-ALS/FTD iPSC-cortical astrocytes. This finding was further validated in human tissue analyses, indicating that cortical astrocytes in C9orf72-ALS/FTD exhibit a reactive transformation that is characterized by a decrease in SPARCL1 expression. Considering the evidence for substantial astrogliosis and synaptic failure leading to cognitive impairments in C9orf72-ALS/FTD, these findings represent a novel understanding of how cortical astrocytes may contribute to the cortical neurodegeneration in this disease spectrum.
ContributorsBustos, Lynette (Author) / Sattler, Rita (Thesis advisor) / Newbern, Jason (Committee member) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Mehta, Shwetal (Committee member) / Arizona State University (Publisher)
Created2023
156920-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.
ContributorsDer-Ghazarian, Taleen (Author) / Neisewander, Janet (Thesis advisor) / Olive, Foster (Committee member) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Arizona State University (Publisher)
Created2018
161234-Thumbnail Image.png
Description
LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to benign and malignant tumors. Past studies have focused on defining

LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to benign and malignant tumors. Past studies have focused on defining LKB1 functions in various tissue types, for example LKB1 regulates axonal polarization and dendritic arborization by activating downstream substrates in excitatory neurons of the developing neocortex. However, the implications of LKB1, specifically in the developing cortical inhibitory GABAergic interneurons is unknown. LKB1 deletion was achieved by using Cre-lox technology to induce LKB1 loss in cells localized in the medial ganglionic eminence (MGE) that express Nkx2.1 and generate cortical GABAergic neurons. In this research study it is suggested that LKB1 plays a role in GABAergic interneuron specification by specifically regulating the expression of parvalbumin during the development of fast-spiking interneurons. Preliminary evidence suggest LKB1 also modulates the number of Nkx2.1-derived oligodendrocytes in the cortex. By utilizing a GABAergic neuron specific LKB1 deletion mutant, we confirmed that the loss of parvalbumin expression was due to a GABAergic neuron autonomous function for LKB1. These data provide new insight into the cell specific functions of LKB1 in the developing brain.
ContributorsSebastian, Rebecca (Author) / Newbern, Jason (Thesis advisor) / Neisewander, Janet (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019
187327-Thumbnail Image.png
Description
The study focuses on the creation of the Strengthening Skills Program (SSP) and its feasibility and acceptability among autistic adults across the lifespan. Over the course of two years, the program has been developed and delivered to autistic adults with the aim of improving quality of life. The program included

The study focuses on the creation of the Strengthening Skills Program (SSP) and its feasibility and acceptability among autistic adults across the lifespan. Over the course of two years, the program has been developed and delivered to autistic adults with the aim of improving quality of life. The program included adapted social skills training from the UCLA Program for the Education and Enrichment of Relational Skills (PEERS) for young adults, adapted mindfulness training from Mindfulness-Based Stress Reduction, and custom executive skills training. Pre- and post-intervention acceptability questionnaires were gathered from 42 participants. Participants were separated into three groups (SSP, PEERS, and Delayed Treatment Control [DTC]; n=14 per group) stratified by age, gender, and if the participant had a program partner who would attend the program alongside as support. All groups were administered over Zoom once per week and lasted for 16 weeks each. The SSP group met for three hours each week and the PEERS group met for an hour and a half. Qualitative analysis was implemented on participant feedback to identify thematic codes related to their experiences with the programs. Overall, results suggest the SSP intervention had significantly higher acceptability ratings compared to PEERS alone and could be a useful addition to the limited interventions available for autistic adults.
ContributorsHill, Ethan Reed (Author) / Braden, Blair (Thesis advisor) / Matthews, Nicole (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2023
161713-Thumbnail Image.png
Description
Individuals with autism spectrum disorder (ASD) are known to show impairments in various domains of executive function (EF) such as behavioral flexibility or inhibitory control. Research suggests that EF impairment in adults with ASD may relate to ASD core symptoms, restrictive behaviors and social communication deficits. Mindfulness-based stress

Individuals with autism spectrum disorder (ASD) are known to show impairments in various domains of executive function (EF) such as behavioral flexibility or inhibitory control. Research suggests that EF impairment in adults with ASD may relate to ASD core symptoms, restrictive behaviors and social communication deficits. Mindfulness-based stress reduction (MBSR) has shown promise for improving EF abilities in neurotypical adults, but research has not explored its efficacy or neural mechanisms in adults with ASD. This pilot study examines the effects of an 8-week MBSR intervention on self-report measures of EF and resting-state functional connectivity in a sample of adults with ASD. Fifty-four participants were assigned either to an MBSR group (n = 29) or a social support group (n = 25). Executive function was measured using the BRIEF-2 before and after the intervention for the twenty-seven participants in the second cohort. MBSR-specific improvements in EF were found for BRIEF measures of initiation, inhibition, and working-memory. Resting-state fMRI data was analyzed using independent component analysis (ICA), and group by time resting-state functional connectivity differences were observed between the cerebellar network and frontal regions including the right frontal pole (rFP), medial frontal cortex (MFC) and left and right superior frontal gyri (SFG). The MBSR group showed increases in functional connectivity between the cerebellum and EF regions which correlated with improvements in BRIEF-2 measures. These findings suggest that MBSR may improve EF domains in adults with ASD, and that increases in functional connectivity between the cerebellum and frontal regions while at rest may be a mechanism for such improvements.
ContributorsGuerithault, Nicolas (Author) / Braden, B. Blair (Thesis advisor) / Rogalsky, Corianne (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2021