Matching Items (19)
Filtering by

Clear all filters

150189-Thumbnail Image.png
Description
This thesis research attempts to observe, measure and visualize the communication patterns among developers of an open source community and analyze how this can be inferred in terms of progress of that open source project. Here I attempted to analyze the Ubuntu open source project's email data (9 subproject log

This thesis research attempts to observe, measure and visualize the communication patterns among developers of an open source community and analyze how this can be inferred in terms of progress of that open source project. Here I attempted to analyze the Ubuntu open source project's email data (9 subproject log archives over a period of five years) and focused on drawing more precise metrics from different perspectives of the communication data. Also, I attempted to overcome the scalability issue by using Apache Pig libraries, which run on a MapReduce framework based Hadoop Cluster. I described four metrics based on which I observed and analyzed the data and also presented the results which show the required patterns and anomalies to better understand and infer the communication. Also described the usage experience with Pig Latin (scripting language of Apache Pig Libraries) for this research and how they brought the feature of scalability, simplicity, and visibility in this data intensive research work. These approaches are useful in project monitoring, to augment human observation and reporting, in social network analysis, to track individual contributions.
ContributorsMotamarri, Lakshminarayana (Author) / Santanam, Raghu (Thesis advisor) / Ye, Jieping (Thesis advisor) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
150281-Thumbnail Image.png
Description
Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others. The vision-based measurement tool design developed in this thesis is

Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others. The vision-based measurement tool design developed in this thesis is a low cost alternative that can be made for less than $500US from off-the-shelf parts and free software. The design is based on the USB microscope. The USB microscope was once considered a toy, similar to the telescopes and microscopes of the 17th century, but has recently started finding applications in industry, laboratories, and schools. In order to convert the USB microscope into a measurement tool, research in the following areas was necessary: currently available vision-based measurement systems, machine vision technologies, microscope design, photographic methods, digital imaging, illumination, edge detection, and computer aided drafting applications. The result of the research was a two-dimensional vision-based measurement system that is extremely versatile, easy to use, and, best of all, inexpensive.
ContributorsGraham, Linda L. (Author) / Biekert, Russell (Thesis advisor) / Macia, Narciso (Committee member) / Meitz, Robert (Committee member) / Arizona State University (Publisher)
Created2011
151476-Thumbnail Image.png
Description
The health benefits of physical activity are widely accepted. Emerging research also indicates that sedentary behaviors can carry negative health consequences regardless of physical activity level. This dissertation explored four projects that examined measurement properties of physical activity and sedentary behavior monitors. Project one identified the oxygen costs of four

The health benefits of physical activity are widely accepted. Emerging research also indicates that sedentary behaviors can carry negative health consequences regardless of physical activity level. This dissertation explored four projects that examined measurement properties of physical activity and sedentary behavior monitors. Project one identified the oxygen costs of four other care activities in seventeen adults. Pushing a wheelchair and pushing a stroller were identified as moderate-intensity activities. Minutes spent engaged in these activities contribute towards meeting the 2008 Physical Activity Guidelines. Project two identified the oxygen costs of common cleaning activities in sixteen adults. Mopping a floor was identified as moderate-intensity physical activity, while cleaning a kitchen and cleaning a bathtub were identified as light-intensity physical activity. Minutes spent engaged in mopping a floor contributes towards meeting the 2008 Physical Activity Guidelines. Project three evaluated the differences in number of minutes spent in activity levels when utilizing different epoch lengths in accelerometry. A shorter epoch length (1-second, 5-seconds) accumulated significantly more minutes of sedentary behaviors than a longer epoch length (60-seconds). The longer epoch length also identified significantly more time engaged in light-intensity activities than the shorter epoch lengths. Future research needs to account for epoch length selection when conducting physical activity and sedentary behavior assessment. Project four investigated the accuracy of four activity monitors in assessing activities that were either sedentary behaviors or light-intensity physical activities. The ActiGraph GT3X+ assessed the activities least accurately, while the SenseWear Armband and ActivPAL assessed activities equally accurately. The monitor used to assess physical activity and sedentary behaviors may influence the accuracy of the measurement of a construct.
ContributorsMeckes, Nathanael (Author) / Ainsworth, Barbara E (Thesis advisor) / Belyea, Michael (Committee member) / Buman, Matthew (Committee member) / Gaesser, Glenn (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2012
151192-Thumbnail Image.png
Description
This research addressed concerns regarding the measurement of cyberbullying and aimed to develop a reliable and valid measure of cyberbullying perpetration and victimization. Despite the growing body of literature on cyberbullying, several measurement concerns were identified and addressed in two pilot studies. These concerns included the most appropriate time frame

This research addressed concerns regarding the measurement of cyberbullying and aimed to develop a reliable and valid measure of cyberbullying perpetration and victimization. Despite the growing body of literature on cyberbullying, several measurement concerns were identified and addressed in two pilot studies. These concerns included the most appropriate time frame for behavioral recall, use of the term "cyberbullying" in questionnaire instructions, whether to refer to power in instances of cyberbullying, and best practices for designing self-report measures to reflect how young adults understand and communicate about cyberbullying. Mixed methodology was employed in two pilot studies to address these concerns and to determine how to best design a measure which participants could respond to accurately and honestly. Pilot study one consisted of an experimental examination of time frame for recall and use of the term on the outcomes of honesty, accuracy, and social desirability. Pilot study two involved a qualitative examination of several measurement concerns through focus groups held with young adults. Results suggested that one academic year was the most appropriate time frame for behavioral recall, to avoid use of the term "cyberbullying" in questionnaire instructions, to include references to power, and other suggestions for the improving the method in the main study to bolster participants' attention. These findings informed the development of a final measure in the main study which aimed to be both practical in its ability to capture prevalence and precise in its ability to measure frequency. The main study involved examining the psychometric properties, reliability, and validity of the final measure. Results of the main study indicated that the final measure exhibited qualities of an index and was assessed as such. Further, structural equation modeling techniques and test-retest procedures indicated the measure had good reliability. And, good predictive validity and satisfactory convergent validity was established for the final measure. Results derived from the measure concerning prevalence, frequency, and chronicity are presented within the scope of findings in cyberbullying literature. Implications for practice and future directions for research with the measure developed here are discussed.
ContributorsSavage, Matthew (Author) / Roberto, Anthony J (Thesis advisor) / Palazzolo, Kellie E (Committee member) / Thompson, Marilyn S (Committee member) / Arizona State University (Publisher)
Created2012
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
149584-Thumbnail Image.png
Description
Construction work is ergonomically hazardous, as it requires numerous awkward postures, heavy lifting and other forceful exertions. Prolonged repetition and overexertion have a cumulative effect on workers often resulting in work related musculoskeletal disorders (WMSDs). The United States spends approximately $850 billion a year on WMSDs. Mechanical

Construction work is ergonomically hazardous, as it requires numerous awkward postures, heavy lifting and other forceful exertions. Prolonged repetition and overexertion have a cumulative effect on workers often resulting in work related musculoskeletal disorders (WMSDs). The United States spends approximately $850 billion a year on WMSDs. Mechanical installation workers experience serious overexertion injuries at rates exceeding the national average for all industries and all construction workers, and second only to laborers. The main contributing factors of WMSDs are ergonomic loads and extreme stresses due to incorrect postures. The motivation for this study is to reduce the WMSDs among mechanical system (HVAC system) installation workers. To achieve this goal, it is critical to reduce the ergonomic loads and extreme postures of these installers. This study has the following specific aims: (1) To measure the ergonomic loads on specific body regions (shoulders, back, neck, and legs) for different HVAC installation activities; and (2) To investigate how different activity parameters (material characteristics, equipment, workers, etc.) affect the severity and duration of ergonomic demands. The study focuses on the following activities: (1) layout, (2) ground assembly of ductwork, and (3) installation of duct and equipment at ceiling height using different methods. The researcher observed and analyzed 15 HVAC installation activities among three Arizona mechanical contractors. Ergonomic analysis of the activities using a postural guide developed from RULA and REBA methods was performed. The simultaneous analysis of the production tasks and the ergonomic loads identified the tasks with the highest postural loads for different body regions and the influence of the different work variables on extreme body postures. Based on this analysis the results support recommendations to mitigate long duration activities and exposure to extreme postures. These recommendations can potentially reduce risk, improve productivity and lower injury costs in the long term.
ContributorsHussain, Sanaa Fatima (Author) / Mitropoulos, Panagiotis (Thesis advisor) / Wiezel, Avi (Committee member) / Guarascio-Howard, Linda (Committee member) / Arizona State University (Publisher)
Created2011
149587-Thumbnail Image.png
Description
It is broadly accepted that physical activity provides substantial health benefits. Despite strong evidence, approximately 60% to 95% of US adults are insufficiently active to obtain these health benefits. This dissertation explored five projects that examined the measurement properties and methodology for a variety of physical activity assessment methods. Project

It is broadly accepted that physical activity provides substantial health benefits. Despite strong evidence, approximately 60% to 95% of US adults are insufficiently active to obtain these health benefits. This dissertation explored five projects that examined the measurement properties and methodology for a variety of physical activity assessment methods. Project one identified validity evidence for the new MyWellness Key accelerometer in sixteen adults. The MyWellness Key demonstrated acceptable validity evidence when compared to a criterion accelerometer during graded treadmill walking and in free-living settings. This supports the use of the MyWellness Key accelerometer to measure physical activity. Project two evaluated validity (study 1) and test-retest reliability evidence (study 2) of the Global Physical Activity Questionnaire (GPAQ) in a two part study. The GPAQ was compared to direct and indirect criterion measures including object and subjective physical activity instruments. These data provided preliminary validity and reliability evidence for the GPAQ that support its use to assess physical activity. Project three investigated the optimal h.d-1 of accelerometer wear time needed to assess daily physical activity. Using a semi-simulation approach, data from 124 participants were used to compare 10-13 h.d-1 to the criterion 14 h.d-1. This study suggested that a minimum accelerometer wear time of 13 h.d-1 is needed to provide a valid measure of daily physical activity. Project four evaluated validity and reliability evidence of a novel method (Movement and Activity in Physical Space [MAPS] score) that combines accelerometer and GPS data to assess person-environment interactions. Seventy-five healthy adults wore an accelerometer and GPS receiver for three days to provide MAPS scores. This study provided evidence for use of a MAPS score for future research and clinical use. Project five used accelerometer data from 1,000 participants from the 2005-2006 National Health and Nutrition Examination Study. A semi-simulation approach was used to assess the effect of accelerometer wear time (10-14 h.d-1) on physical activity data. These data showed wearing for 12 h.d-1 or less may underestimate time spent in various intensities of physical activity.
ContributorsHerrmann, Stephen (Author) / Ainsworth, Barbara (Thesis advisor) / Gaesser, Glenn (Committee member) / Der Ananian, Cheryl (Committee member) / Kang, Minsoo (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2011
157636-Thumbnail Image.png
Description
Although researchers often conceptualize shyness as stable across different situations (e.g., Rubin, Coplan, & Bowker, 2009), evidence has suggested that shyness may consist of situation-specific components (e.g., Asendorpf, 1990a; 1990b; Gazelle & Faldowski, 2014; Xu & Farver, 2009). This study was aimed at developing a systematic measurement tool for situational

Although researchers often conceptualize shyness as stable across different situations (e.g., Rubin, Coplan, & Bowker, 2009), evidence has suggested that shyness may consist of situation-specific components (e.g., Asendorpf, 1990a; 1990b; Gazelle & Faldowski, 2014; Xu & Farver, 2009). This study was aimed at developing a systematic measurement tool for situational shyness in adolescence, as well as examining the relations between situational shyness and other popular measures of shyness and between situational shyness and adjustment. A sample of Chinese adolescents (N = 492) from an urban school participated in the study during 7th (T1) and 8th (T2) grades. Adolescents self-reported their situational shyness using a new measure of hypothetical scenarios, as well as their general shyness, anxious shyness, regulated shyness, depressive symptoms, and loneliness. Peers reported adolescents’ general and conflicted shyness, and popularity and peer rejection. The school provided records of their academic achievement (exam scores).

Exploratory and confirmatory factor analyses of the situational shyness measure consistently supported that shyness in the hypothetical scenarios can be separated into three components: shyness with familiar peers, shyness with unfamiliar peers, and shyness in formal situations. These components had differential associations with other measures of shyness. Self-reported general and anxious shyness were related consistently to shyness with unfamiliar peers and in formal situations, and occasionally to shyness with familiar peers. Self-reported regulated shyness was not related to self-reported shyness in any situation. Peer-reported conflicted shyness was associated with shyness with familiar and unfamiliar peers, whereas peer-reported general shyness was associated with shyness with unfamiliar peers and in formal situations. Moreover, situational shyness showed differential relations to maladjustment. Shyness with familiar peers was associated positively with maladjustment in multiple domains, especially academic and peer difficulties. Shyness with unfamiliar peers and shyness in formal situations, in contrast, were associated primarily with internalizing problems. In addition, shyness with unfamiliar peers and in formal situations occasionally related to positive adjustment, suggesting shyness in specific situations may still be protective in contemporary urban China. The findings provided new evidence that the correlates of shyness depend on the situation in which shyness occurs, and may inform future intervention programs.
ContributorsAn, Danming (Author) / Eggum-Wilkens, Natalie D (Thesis advisor) / Spinrad, Tracy L (Committee member) / Eisenberg, Nancy (Committee member) / Lemery-Chalfant, Kathryn (Committee member) / Arizona State University (Publisher)
Created2019
154852-Thumbnail Image.png
Description
Statistical mediation analysis allows researchers to identify the most important the mediating constructs in the causal process studied. Information about the mediating processes can be used to make interventions more powerful by enhancing successful program components and by not implementing components that did not significantly change the outcome. Identifying mediators

Statistical mediation analysis allows researchers to identify the most important the mediating constructs in the causal process studied. Information about the mediating processes can be used to make interventions more powerful by enhancing successful program components and by not implementing components that did not significantly change the outcome. Identifying mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to external criteria. However, current methods do not allow researchers to study the relationships between general and specific aspects of a construct to an external criterion simultaneously. This study proposes a bifactor measurement model for the mediating construct as a way to represent the general aspect and specific facets of a construct simultaneously. Monte Carlo simulation results are presented to help to determine under what conditions researchers can detect the mediated effect when one of the facets of the mediating construct is the true mediator, but the mediator is treated as unidimensional. Results indicate that parameter bias and detection of the mediated effect depends on the facet variance represented in the mediation model. This study contributes to the largely unexplored area of measurement issues in statistical mediation analysis.
ContributorsGonzález, Oscar (Author) / Mackinnon, David P (Thesis advisor) / Grimm, Kevin J. (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2016
154532-Thumbnail Image.png
Description
Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a

Modern systems that measure dynamical phenomena often have limitations as to how many sensors can operate at any given time step. This thesis considers a sensor scheduling problem in which the source of a diffusive phenomenon is to be localized using single point measurements of its concentration. With a linear diffusion model, and in the absence of noise, classical observability theory describes whether or not the system's initial state can be deduced from a given set of linear measurements. However, it does not describe to what degree the system is observable. Different metrics of observability have been proposed in literature to address this issue. Many of these methods are based on choosing optimal or sub-optimal sensor schedules from a predetermined collection of possibilities. This thesis proposes two greedy algorithms for a one-dimensional and two-dimensional discrete diffusion processes. The first algorithm considers a deterministic linear dynamical system and deterministic linear measurements. The second algorithm considers noise on the measurements and is compared to a Kalman filter scheduling method described in published work.
ContributorsNajam, Anbar (Author) / Cochran, Douglas (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Chao (Committee member) / Arizona State University (Publisher)
Created2016