Matching Items (5)
Filtering by

Clear all filters

152562-Thumbnail Image.png
Description
Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is fitted to the point cloud and the results are assessed to see whether the fitted feature lies within the specified

Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is fitted to the point cloud and the results are assessed to see whether the fitted feature lies within the specified tolerance limits or not. Coordinate Measuring Machines (CMMs) use feature fitting algorithms that incorporate least square estimates as a basis for obtaining minimum, maximum, and zone fits. However, a comprehensive set of algorithms addressing the fitting procedure (all datums, targets) for every tolerance class is not available. Therefore, a Library of algorithms is developed to aid the process of feature fitting, and tolerance verification. This paper addresses linear, planar, circular, and cylindrical features only. This set of algorithms described conforms to the international Standards for GD&T.; In order to reduce the number of points to be analyzed, and to identify the possible candidate points for linear, circular and planar features, 2D and 3D convex hulls are used. For minimum, maximum, and Chebyshev cylinders, geometric search algorithms are used. Algorithms are divided into three major categories: least square, unconstrained, and constrained fits. Primary datums require one sided unconstrained fits for their verification. Secondary datums require one sided constrained fits for their verification. For size and other tolerance verifications, we require both unconstrained and constrained fits
ContributorsMohan, Prashant (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph K. (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2014
153035-Thumbnail Image.png
Description
Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. In a CMM the use of different feature fitting algorithms on a feature gives different values, and there is no standard that describes the type of feature fitting algorithm to be used for a specific tolerance. Our research is focused on identifying the feature fitting algorithm that is best used for each type of tolerance. Each algorithm is identified as the one to best represent the interpretation of geometric control as defined by the ASME Y14.5 standard and on the manual methods used for the measurement of a specific tolerance type. Using these algorithms normative procedures for CMMs are proposed for verifying tolerances. The proposed normative procedures are implemented as software. Then the procedures are verified by comparing the results from software with that of manual measurements.

To aid this research a library of feature fitting algorithms is developed in parallel. The library consists of least squares, Chebyshev and one sided fits applied on the features of line, plane, circle and cylinder. The proposed normative procedures are useful for evaluating tolerances in CMMs. The results evaluated will be in accordance to the standard. The ambiguity in choosing the algorithms is prevented. The software developed can be used in quality control for inspection purposes.
ContributorsVemulapalli, Prabath (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Takahashi, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
154307-Thumbnail Image.png
Description
Self-control has been shown to predict both health risk and health protective outcomes. Although top-down or “good” self-control is typically examined as a unidimensional construct, research on “poor” self-control suggests that multiple dimensions may be necessary to capture aspects of self-control. The current study sought to create a new brief

Self-control has been shown to predict both health risk and health protective outcomes. Although top-down or “good” self-control is typically examined as a unidimensional construct, research on “poor” self-control suggests that multiple dimensions may be necessary to capture aspects of self-control. The current study sought to create a new brief survey measure of top-down self-control that differentiates between self-control capacity, internal motivation, and external motivation. Items were adapted from the Brief Self-Control Scale (BSCS; Tangney, Baumeister, & Boone, 2004) and were administered through two online surveys to 347 undergraduate students enrolled in introductory psychology courses at Arizona State University. The Self-Control Motivation and Capacity Survey (SCMCS) showed strong evidence of validity and reliability. Exploratory and confirmatory factor analyses supported a 3-factor structure of the scale consistent with the underlying theoretical model. The final 15-item measure demonstrated excellent model fit, chi-square = 89.722 p=.077, CFI = .989, RMSEA = .032, SRMR = .045. Despite several limitations including the cross-sectional nature of most analyses, self-control capacity, internal motivation, and external motivation uniquely related to various self-reported behavioral outcomes, and accounted for additional variance beyond that accounted for by the BSCS. Future studies are needed to establish the stability of multiple dimensions of self-control, and to develop state-like and domain-specific measures of self-control. While more research in this area is needed, the current study demonstrates the importance of studying multiple aspects of top-down self-control, and may ultimately facilitate the tailoring of interventions to the needs of individuals based on unique profiles of self-control capacity and motivation.
ContributorsPapova, Anna (Author) / Corbin, William R. (Thesis advisor) / Karoly, Paul (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2016
149542-Thumbnail Image.png
Description
The essence of this research is the reconciliation and standardization of feature fitting algorithms used in Coordinate Measuring Machine (CMM) software and the development of Inspection Maps (i-Maps) for representing geometric tolerances in the inspection stage based on these standardized algorithms. The i-Map is a hypothetical point-space that represents the

The essence of this research is the reconciliation and standardization of feature fitting algorithms used in Coordinate Measuring Machine (CMM) software and the development of Inspection Maps (i-Maps) for representing geometric tolerances in the inspection stage based on these standardized algorithms. The i-Map is a hypothetical point-space that represents the substitute feature evaluated for an actual part in the inspection stage. The first step in this research is to investigate the algorithms used for evaluating substitute features in current CMM software. For this, a survey of feature fitting algorithms available in the literature was performed and then a case study was done to reverse engineer the feature fitting algorithms used in commercial CMM software. The experiments proved that algorithms based on least squares technique are mostly used for GD&T; inspection and this wrong choice of fitting algorithm results in errors and deficiency in the inspection process. Based on the results, a standardization of fitting algorithms is proposed in light of the definition provided in the ASME Y14.5 standard and an interpretation of manual inspection practices. Standardized algorithms for evaluating substitute features from CMM data, consistent with the ASME Y14.5 standard and manual inspection practices for each tolerance type applicable to planar features are developed. Second, these standardized algorithms developed for substitute feature fitting are then used to develop i-Maps for size, orientation and flatness tolerances that apply to their respective feature types. Third, a methodology for Statistical Process Control (SPC) using the I-Maps is proposed by direct fitting of i-Maps into the parent T-Maps. Different methods of computing i-Maps, namely, finding mean, computing the convex hull and principal component analysis are explored. The control limits for the process are derived from inspection samples and a framework for statistical control of the process is developed. This also includes computation of basic SPC and process capability metrics.
ContributorsMani, Neelakantan (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2011
157677-Thumbnail Image.png
Description
Self-control has been shown to be an important influence behind a variety of risk and protective behaviors, such as substance abuse. Although prior research points to the existence of multiple dimensions of self-control, this concept is not consistently defined and frequently only studied as a conglomerate in clinical research. The

Self-control has been shown to be an important influence behind a variety of risk and protective behaviors, such as substance abuse. Although prior research points to the existence of multiple dimensions of self-control, this concept is not consistently defined and frequently only studied as a conglomerate in clinical research. The current study sought to examine how two experimental manipulations of subcomponents of self-control (motivation and self-efficacy) affect real-world consumptive behavior after accounting for executive function. Additionally, the validity and reliability of a brief state survey measure of perceived self-control capacity, internal motivation, and external motivation was tested. The goal was to examine how basic scientific principles involved in self-control translate into clinically relevant behaviors, which may inform understanding of momentary lapses in self-control behavior, potentially leading to novel prevention and intervention efforts. 94 college students completed a 1-2 hour laboratory protocol during which they completed survey and laboratory-based tasks of self-control and related behaviors, executive function, and ad libitum alcohol consumption. Results showed that the self-efficacy manipulation successfully increased perceived self-control capacity, although this did not lead to a significant reduction in consumption. The motivation manipulation neither increased motivation nor reduced consumption in this sample. However, the brief state survey measure of self-control subcomponents demonstrated strong test-retest reliability and distinction from trait self-control, demonstrating its viability for use in future research. By elucidating the relationships between specific mechanisms of self-control, laboratory-based tasks and manipulations, and real-world consumptive behaviors, prevention and intervention efforts for problems such as alcohol abuse may be tailored to the needs of the individual and made more impactful and cost-effective.
ContributorsPapova, Anna (Author) / Corbin, William R. (Thesis advisor) / Brewer, Gene (Committee member) / Karoly, Paul (Committee member) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2020