Matching Items (3)
Filtering by

Clear all filters

135424-Thumbnail Image.png
Description
Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced by other environmental factors that can determine total excretion-derived N, P, and N:P. Garden Canyon and Ramsey Canyon, two streams

Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced by other environmental factors that can determine total excretion-derived N, P, and N:P. Garden Canyon and Ramsey Canyon, two streams in the Huachuca Mountain Range in Southern Arizona, USA, host similar insect communities, but only Garden Canyon experiences a seasonal P limitation due to the co-precipitation of phosphate with calcium carbonate (CaCO3) in its benthic substrate (Corman et al. 2015). I performed an analysis of excretion rates of aquatic insects living in these streams to test if the P limitation is reflected in rates that insects recycle nutrients. A lower mean N:P of all insect excretion rates in Garden provides evidence for an ecosystem-scale effect, though the differences in N:P of excretion rates by individual taxa between streams did not support the hypothesis. Attributing excretion rates to actual insect densities in three years reveals that natural-occurring fluctuations in excretion rates can operate on the same magnitude as fluctuations in abundances and causes steep differences in nutrient conversion between streams. Lastly, I found that since these streams support immense insect diversity, they receive excretion-derived N and P from taxa in many different functional feeding groups, which illustrates ecosystem resilience and uniqueness.
ContributorsSanders, Ashley Marie (Author) / Sabo, John (Thesis director) / Cease, Arianne (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
154914-Thumbnail Image.png
Description
There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives

There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed light on the sensitivity of immune function to hydration state, I first tested the effect of hydration states (hydrated, dehydrated, and rehydrated) and digestive states on innate immunity in the Gila monster, a desert-dwelling lizard. Though dehydration is often thought to be stressful and, if experienced chronically, likely to decrease immune function, dehydration elicited an increase in immune response in this species, while digestive state had no effect. Next, I tested whether dehydration was indeed stressful, and tested a broader range of immune measures. My findings validated the enhanced innate immunity across additional measures and revealed that Gila monsters lacked a significant stress hormone response during dehydration (though results were suggestive). I next sought to test if life history (in terms of environmental stability) drives these differences in dehydration responses using a comparative approach. I compared four confamilial pairs of squamate species that varied in habitat type within each pair—four species that are adapted to xeric environments and four that are adapted to more mesic environments. No effect of life history was detected between groups, but hydration was a driver of some measures of innate immunity and of stress hormone concentrations in multiple species. Additionally, species that exhibited a stress response to dehydration did not have decreased innate immunity, suggesting these physiological responses may often be decoupled. My dissertation work provides new insight into the relationship between hydration, stress, and immunity, and it may inform future work exploring disease transmission or organismal responses to climate change.
ContributorsMoeller, Karla T (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / French, Susannah (Committee member) / Rutowski, Ronald (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
155626-Thumbnail Image.png
Description
Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the

Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat protection influences dhub behavior and physiology.

Results of this study showed that while body mass and body condition consistently diminished as the active season progressed, they were both greater in protected habitats compared to non-protected habitats, regardless of season. Dhubs surface activity and total body water decreased while evaporative water loss and body temperature increased as the active season progressed and ambient temperature got hotter. Total body water was also significantly affected by habitat protection.

Overall, this study revealed that, while habitat protection provided more vegetation, it had little effect on seasonal changes in surface activity. While resource availability in protected areas might allow for larger dhub populations, unprotected areas showed similar body morphometrics, activity, and body temperatures. By developing an understanding of how different coping strategies are linked to particular ecological, morphological, and phylogenetic traits, we will be able to make more accurate predictions regarding the vulnerability of species. By combining previous studies pertaining to conservation of protected species with the results of my study, a number of steps in ecosystem management are recommended to help in the preservation of dhubs in the Kuwaiti desert.
ContributorsAl-Sayegh, Mohammed (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / Smith, Andrew (Committee member) / Sabo, John (Committee member) / Majeed, Qais (Committee member) / Arizona State University (Publisher)
Created2017