Matching Items (27)
Filtering by

Clear all filters

187724-Thumbnail Image.png
Description
Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode

Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode surface/ volume treated ratios. By making electrodes flexible, more compact designs that maximize electrode surface per volume treated might become a reality. This dissertation encompasses the successful fabrication of flexible nanocomposite electrodes for electrocatalysis and electroanalysis applications.First, nano boron-doped diamond electrodes (BDD) were prepared as an inexpensive alternative to commercial boron-doped diamond electrodes. Comparative detailed surface and electrochemical characterization was conducted. Empirical study showed that replacing commercial BDD electrodes with nano-BDD electrodes can result in a cost reduction of roughly 1000x while maintaining the same electrochemical performance. Next, self-standing electrodes were fabricated through the electropolymerization of conducing polymer, polypyrrole. Surface characterizations, such as SEM, FTIR and XPS proved the successful fabrication of these self-standing electrodes. High mechanical stability and bending flexibility demonstrated the ability to use these electrodes in different designs, such as roll-to-roll membranes. Electrochemical nitrite reduction was employed to demonstrate the viability of using self-standing nanocomposite electrodes for electrocatalytic applications reducing hazardous nitrogen oxyanions (i.e., nitrite) towards innocuous species such as nitrogen gas. A high faradaic efficiency of 78% was achieved, with high selectivity of 91% towards nitrogen gas. To further enhance the conductivity and charge transfer properties of self-standing polypyrrole electrodes, three different nanoparticles, including copper (Cu), gold (Au), and platinum (Pt), were incorporated in the polypyrrole matrix. Effect of nanoparticle wt% and interaction between metal nanoparticles and polypyrrole matrix was investigated for electroanalytical applications, specifically dopamine sensing. Flexible nanocomposite electrodes showed outstanding performance as electrochemical sensors with PPy-Cu 120s exhibiting a low limit of detection (LOD) of 1.19 µM and PPy-Au 120s exhibiting a high linear range of 5 µM - 300 µM. This dissertation outlines a method of fabricating self-standing electrodes and provides a pathway of using self-standing electrodes based on polypyrrole and polypyrrole-metal nanocomposites for various applications in wastewater treatment and electroanalytical sensing.
ContributorsBansal, Rishabh (Author) / Garcia-Segura, Sergio (Thesis advisor) / Westerhoff, Paul (Committee member) / Perreault, Francois (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2023
171487-Thumbnail Image.png
Description
The development of sustainable catalysts that exhibit exceptional activity has become a major goal of organometallic chemists. Considering their low cost and environmentally benign nature, the use of base metals in catalysis has recently been explored. This dissertation is focused on the development of manganese catalysts for organic transformations and

The development of sustainable catalysts that exhibit exceptional activity has become a major goal of organometallic chemists. Considering their low cost and environmentally benign nature, the use of base metals in catalysis has recently been explored. This dissertation is focused on the development of manganese catalysts for organic transformations and inorganic polymerizations. Previous advances in Mn-based hydrosilylation and hydroboration catalysis are reviewed in Chapter 1 and set the stage for the experimental work described herein.In Chapter 2, the electronic structure of [(2,6-iPr2PhBDI)Mn(μ-H)]2 is explored. This compound was evaluated by density functional theory calculations, SQUID magnetometry and EPR spectroscopy at low temperature. Single crystal X-ray diffraction data was collected for related compounds that feature bridging X-type ligands. The data revealed how bridging ligands impact the Mayer bond order between the two Mn atoms and explained why [(2,6-iPr2PhBDI)Mn(μ-H)]2 is an active catalyst for organic transformations. Chapter 3 spotlights the first study to systematically demonstrate commercial aminosilane CVD precursor synthesis by way of SiH4 and amine dehydrocoupling using [(2,6-iPr2PhBDI)Mn(μ-H)]2. In addition, the study provided an efficient and halogen-free preparation of highly cross-linked polycarbosilazanes under ambient conditions. Furthermore, exceptionally pure perhydropolysilazane was directly prepared from ammonia and silane at room temperature through dehydrogenative coupling. These are also the first reported examples of Mn-catalyzed Si–N dehydrocoupling. This research was then extended to the Mn-catalyzed dehydrogenative coupling of NH3 and diamines to organic silanes. Organic polysilazanes and polycarbosilazanes were synthesized and the structures were characterized by NMR, FT-IR, and MALDI-TOF spectroscopy. The thermal properties and coating applications of the products were evaluated by TGA, DSC, X-ray powder diffraction, SEM and EDX. A turnover frequency (TOF) experiment using 0.01 mol% of [(2,6-iPr2PhBDI)Mn(μ-H)]2 revealed a maximum TOF of 300 s-1, which is the highest activity ever reported for this transformation. The last chapter highlights the first examples of nitrile dihydroboration mediated by a manganese catalyst. Using 0.5 mol% of [(2,6-iPr2PhBDI)Mn(μ-H)]2, 14 nitriles were reduced with HBPin at 80 ℃ to afford N,N-diborylamines after 24 h. A mechanism was proposed based on the isolation of [(2,6-iPr2PhBDI)Mn(NCHPh)]2 as an intermediate and further substantiated by DFT.
ContributorsNguyen, Thu Thao (Author) / Trovitch, Ryan (Thesis advisor) / Jones, Anne (Committee member) / Ackerman, Laura (Committee member) / Arizona State University (Publisher)
Created2022
171822-Thumbnail Image.png
Description
Polyolefins have dominated global polymer production for the past 60 years, revolutionizing fields of medicine, construction, travel, packaging, and many more. However, with steadily increasing polyolefin production each year and traditionally long polyethylene (PE) and polypropylene degradation times, estimated on the order of 500 years or more, a massive challenge

Polyolefins have dominated global polymer production for the past 60 years, revolutionizing fields of medicine, construction, travel, packaging, and many more. However, with steadily increasing polyolefin production each year and traditionally long polyethylene (PE) and polypropylene degradation times, estimated on the order of 500 years or more, a massive challenge arises with accumulating plastic waste. While the end-of-life of polyolefins previously manufactured must be addressed, incorporation of sustainability and circularity into future commodity plastic design at the molecular level offers an opportunity to decrease their negative effects on the environment going forward. Herein, several approaches are described which aim to address the need for polymeric materials while introducing a sustainable approach to their design, either through incorporation of biosynthesized polymers or degradable units. In the first project, polymer blends of two biodegradable polymers were studied, and compared to the same blends containing a graft copolymer compatibilizer comprised of the two homopolymer counterparts. The compatibilized blends were expected to have superior mechanical performance to the uncompatibilized blend and potentially offer industrially relevant benefits. While this was not achieved, valuable insight into the polymer blend interactions were gained. The idea of compatibilizing polymer blends was further explored with blends of PE and a cellulose derivative with the aid of a custom ABA triblock compatibilizing agent. It was discovered that the compatibilizer reinforced the polymer blend by providing mechanical strength at the cost of flexibility. To approach sustainability from a different perspective, several segmented copolymer series based on telechelic PE oligomers were then synthesized and analyzed. The segmented systems exhibited similar structure to high density PE (HDPE), retained similar mechanical and thermal properties to commercial HDPE, but contained degradable units throughout the polymer backbone. Several fundamental principles were explored through the segmented and chain-extended polyolefin architecture, including the influence of reactive linkage (amide vs. ester), random vs. alternating segment structure, and PE segment molecular weight. The effects of tailoring polymer structure on thermal, mechanical, and morphological properties are described herein. The relationships established from these experiments may further guide future polymer design and contribute toward more sustainable polyolefin manufacturing.
ContributorsArrington, Anastasia Sergeevna (Author) / Long, Timothy E. (Thesis advisor) / Jin, Kailong (Committee member) / Biegasiewicz, Kyle F. (Committee member) / Matson, John B. (Committee member) / Arizona State University (Publisher)
Created2022
189203-Thumbnail Image.png
Description
Both molecular structure of macromolecular materials and subsequent processing of these materials dictate resulting material properties. In this work novel synthetic strategies combined with detailed analytical methodology reveal fundamental structure-processing-property relationships in thermoplastic polyesters, thermoplastic polyurethanes, covalently crosslinked acetal functionalized networks, and small molecule surfactants. 4,4’ dimethyloxybisbenzoate afforded a series

Both molecular structure of macromolecular materials and subsequent processing of these materials dictate resulting material properties. In this work novel synthetic strategies combined with detailed analytical methodology reveal fundamental structure-processing-property relationships in thermoplastic polyesters, thermoplastic polyurethanes, covalently crosslinked acetal functionalized networks, and small molecule surfactants. 4,4’ dimethyloxybisbenzoate afforded a series of novel polyester structures, and the incorporation of this monomer both increased the Tg and decreased the crystallinity in cyclohexane dimethanol based polyesters. Solubility and dynamic light scattering experiments combined with oscillatory rheology techniques provided methodology to validate polyurethane extrusion in commercial polyurethanes. Acid catalyzed hydroxyl addition to vinyl ethers provided two families of acetal functionalized poly(ethylene glycol hydrogels). Stoichiometric control of binary thiol-acrylate polymerizations afforded hydrogels with both tunable mechanical properties and predictable degradation profiles. Following this work, a photoacid generator catalyzed cationic catalysis provided acetal functionalized organogels whose mechanical properties were predicted by excess vinyl ether monomers which underwent cationic polymerization under the same reaction conditions that yielded acetal functionalization. Time resolved FT-IR spectroscopy provided new understanding in hydroxyl vinyl ether reactions, where both hydroxyl addition to a vinyl ether and vinyl ether cationic polymerization occur concurrently. This work inspired research into new reactive systems for photobase generator applications. However, current photobase generator technologies proved incompatible for carbon-Michael reactions between acetoacetate and acrylate functionalities as a result of uncontrollable acrylate free radical polymerization. The fundamental knowledge and synthetic strategies afforded by these investigations were applied to small molecule surfactant systems for fire-fighting applications. Triethylsilyl-containing zwitterionic and cationic surfactants displayed surface tensions lower than hydrocarbon surfactants, but larger than siloxane-containing surfactants. For the first time, oscillatory rheology and polarized optical light imagine rheology highlighted shear-induced micelle alignment in triethylsilyl surfactants, which provided more stable foams than zwitterionic analogues. The knowledge gained from these investigations provided fundamental structure-processing-property relationships in small molecule surfactant solutions applied as fire-fighting foams. This discovery regarding the effect of self-assembled structures in foam solutions informs the design and analysis of next generation surfactants to replace fluorocarbon surfactants in fire-fighting foam applications.
ContributorsBrown, James Robert (Author) / Long, Timothy E (Thesis advisor) / Bortner, Michael J (Committee member) / Biegasiewicz, Kyle F (Committee member) / Jin, Kailong (Committee member) / Arizona State University (Publisher)
Created2023
189276-Thumbnail Image.png
Description
Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using

Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using octylamine, dodecylamine and hexadecylamine. Initial reactions with the three amines were performed with and without EG to observe and compare the terephthalamides obtained from these reactions to test this hypothesis. Various reaction conditions like concentration of reactants, temperature and time of reaction were later considered and employed to find the optimal conditions for the depolymerization of PET before confirming the catalytic properties of EG in the aminolysis reaction. The depolymerized products were subjected to attenuated total reflectance-infrared spectroscopy (ATR-IR Spectroscopy) to check for presence of important amide and ester peaks through their infrared absorption peaks, thermogravimetric analysis (TGA) to find their Td5 temperatures and differential scanning calorimetry (DSC) to check for endothermic melting temperature of the obtained products. These characterization techniques were used to understand, examine, and compare the different properties of the products obtained from different reaction mixtures. The three distinct amines considered for this reaction also showed differences in the conversion rate of PET under similar reaction conditions thus signifying the importance of selecting an appropriate amine reactant for the aminolysis process. Finally, the in-situ IR probe was used to determine the reaction kinetics of the aminolysis reaction and the formation and loss of products and reactants with time.
ContributorsBakkireddy, Adarsh (Author) / Green, Matthew (Thesis advisor) / Emady, Heather (Committee member) / Seo, Eileen S. (Committee member) / Arizona State University (Publisher)
Created2023
187333-Thumbnail Image.png
Description
Creating 3D objects out of high performance polymers, such as polyimides, is notoriously difficult since the highly stable polymer backbone limits processibility without extreme conditions. However, designing the polyimide precursor to crosslink upon photoirradiation enables the additive manufacturing of polyimides into complex, 3D objects. Crosslinking the photoactive polyimide precursor forms

Creating 3D objects out of high performance polymers, such as polyimides, is notoriously difficult since the highly stable polymer backbone limits processibility without extreme conditions. However, designing the polyimide precursor to crosslink upon photoirradiation enables the additive manufacturing of polyimides into complex, 3D objects. Crosslinking the photoactive polyimide precursor forms a solid 3D organogel, then subsequent thermal treatment removes the sacrificial scaffold and simultaneously imidizes the precursor into a 3D polyimide. The collaborative efforts of the Long and Williams group at Virginia Tech created three chemically distinct photoactive polyimide precursors to additively manufacture 3D polyimide objects for aerospace applications and to maintain the nuclear stockpile. The first chapter of this dissertation introduces fully aromatic polyimides and the additive manufacturing techniques used to print photoactive polyimide precursors. The second chapter reviews the common pore forming methods typically utilized to develop porous polyimides for low dielectric applications. The following chapters investigate the impact of the sacrificial scaffold on the thermo-oxidative aging behavior of the polyimide precursors after imidization, then focuses on lowering the imidization temperature of the polyimide precursor using base catalysis. These investigations lead to the creation of photoactive polysalts with polyethylene glycol (PEG) side chains to develop 3D, porous polyimides with tunable morphologies. Varying the molecular weight and concentration of the PEG side chains along the backbone tuned the pore size, and the photoactive nature of the polyimide precursor enabled 3D, porous polyimides printed using digital light processing.
ContributorsVandenbrande, Johanna (Author) / Long, Timothy E (Thesis advisor) / Williams, Christopher B (Committee member) / Jin, Kailong (Committee member) / Seo, Eileen (Committee member) / Arizona State University (Publisher)
Created2023
187300-Thumbnail Image.png
Description
The excessive use of fossil fuels over the last few centuries has led to unprecedented changes in climate and a steady increase in the average surface global temperatures. Direct Air Capture(DAC) aims to capture CO2 directly from the atmosphere and alleviate some of the adverse effects of climate change. This

The excessive use of fossil fuels over the last few centuries has led to unprecedented changes in climate and a steady increase in the average surface global temperatures. Direct Air Capture(DAC) aims to capture CO2 directly from the atmosphere and alleviate some of the adverse effects of climate change. This dissertation focuses on methodologies to make advanced functional materials that show good potential to be used as DAC sorbents. Details on sorbent material synthesis and post-synthesis methods to obtain high surface area morphologies are described in detail. First, by incorporating K2CO3 into activated carbon (AC) fiber felts, the sorption kinetics was significantly improved by increasing the surface area of K2CO3 in contact with air. The AC-K2CO3 fiber composite felts are flexible, cheap, easy to manufacture, chemically stable, and show excellent DAC capacity and (de)sorption rates, with stable performance up to ten cycles. The best composite felts collected an average of 478 µmol of CO2 per gram of composite during 4 h of exposure to ambient (24% RH) air that had a CO2 concentration of 400-450 ppm over 10 cycles. Secondly, incorporating the amino acid L-arginine (L-Arg) into a poly(vinyl alcohol) (PVA) nanofiber support structure, created porous substrates with very high surface areas of L-Arg available for CO2 sorption. The bio-inspired PVA-Arg nanofiber composites are flexible and show excellent DAC performance compared to bulk L-Arg. The nanofiber composites are fabricated from an electrospinning process using an aqueous polymer solution. High ambient humidity levels improve sorption performance significantly. The best performing nanofiber composite collected 542 µmol of CO2 per gram of composite during 2 h of exposure to ambient, high humidity (100% RH) air that had a CO2 concentration of 400-450 ppm. Finally, poly(vinyl guanidine) (PVG) polymer was synthesized and tested for sorption performance. The fabrication of PVG nanofibers, divinyl benzene crosslinked PVG beads and glutaraldehyde crosslinked PVG were demonstrated. The sorption performance of the fabricated sorbents were tested with the glutaraldehyde crosslinked PVG having a dynamic sorption capacity of over 1 mmol of CO2 per gram of polymer in 3 h. The sorption capability of liquid PVG was also explored.
ContributorsModayil Korah, Mani (Author) / Green, Matthew D (Thesis advisor) / Lackner, Klaus (Committee member) / Long, Timothy E (Committee member) / Thomas, Marylaura L (Committee member) / Jin, Kailong (Committee member) / Arizona State University (Publisher)
Created2024
171362-Thumbnail Image.png
Description
Emerging interest in research of polymeric biomaterials towards human health has intrigued me to pursue my graduate research, primarily towards a few biomedical applications like radiation dosimetry, drug & gene delivery systems. Although Radiotherapy remains a foundation of cancer treatment procedures in clinic; overdosing of radiation can induce toxicity to

Emerging interest in research of polymeric biomaterials towards human health has intrigued me to pursue my graduate research, primarily towards a few biomedical applications like radiation dosimetry, drug & gene delivery systems. Although Radiotherapy remains a foundation of cancer treatment procedures in clinic; overdosing of radiation can induce toxicity to sensitive organs and underexposure can lead to low efficacies of tumor treatment. Commercial sensors consist of several intrinsic disadvantages due to their sensitivity to heat and light, long processing times, and high costs. For real-time dose detection, a novel colorimetric hydrogel sensor was developed with formation of maroon-colored gold nanoparticles (templated by a variety of surfactants and amino acids) within an agarose-based polymeric hydrogel, upon exposure of ionizing radiation. Translational potential of sensor was demonstrated using anthropomorphic phantoms and in live canine patients undergoing radiotherapy treatments by qualitatively and quantitatively measuring the delivered dose. Combination therapy by simultaneously using drug & gene delivery with a single multifunctional carrier can lead to novel treatment modalities for various diseases like Cancer, Alzheimer etc. A library of lipid-based Aminoglycoside-derived cationic self-assembling polymer nanoparticles (LPNs) was developed with size ranging from (50-150) nm. Lead LPNs showed great potential for concurrent delivery of nucleic acids along with small molecule drug such as histone deacetylase (HDAC) inhibitor, AR-42 as a combination treatment to cancer cells.
ContributorsDutta, Subhadeep (Author) / Yarger, Jeffery JL (Thesis advisor) / Stephanopoulos, Nicholas NS (Committee member) / Pannala, Rahul RP (Committee member) / Arizona State University (Publisher)
Created2022
171680-Thumbnail Image.png
Description
High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of

High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of this waste plastic ends up in landfills or incineration to recover energy. Plastic production consumes a lot of energy and is associated with CO2 emissions. This method of disposing plastic only adds to the environmental pollution rather than improving it. Primary reasons for low recycling rate appear to be more political and financial. In the US, the rate of recycling was less than 10% whereas Japan showed a recycling rate of more than 80%. The other aspect of low recycling is financial. In order to make recycling a financially viable process, efforts have to be made to streamline the process of waste collection, segregation and technically feasible process. This study focusses on the technical aspect of the issue. Even though efforts have been made to recycle HDPE, none of the processes have been recycle HDPE with financial viability, recovering full value of plastic, minimum CO2 emissions and minimum change in properties of the polymer. This study focusses on effective recycling of HDPE with minimum change in its properties. Dissolution has been used to dissolve the polymer selectively and then reprecipitating the polymer using a non-solvent to obtain the polymer grains. This is followed by mixing additives to the polymer grains to minimize degradation of the polymer during the extrusion process. The polymer is then extruded in an extruder beyond its melting temperature. This process is repeated for 5 cycles. After each cycle, the polymer is tested for its properties using the Tensile Testing, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Mechanicalii Analysis (DMA). It was observed that the rheological properties of the polymer were maintained after the 5th recycle whereas the mechanical properties deteriorated after the 2nd recycle. Also, increase in carbonyl index was observed after 5th recycle.
ContributorsSaini, Rahul Rakesh (Author) / Green, Matthew (Thesis advisor) / Holloway, Julianne (Committee member) / Xie, Renxuan (Committee member) / Arizona State University (Publisher)
Created2022
171709-Thumbnail Image.png
Description
Freshwater is becoming more and more scarce, and the need to make use of other water resources is critical. Although processes such as Sea Water Reverse Osmosis (SWRO) exist, these processes are not without drawbacks, such as a brine with a high salt concentration being a byproduct of SWRO. Pervaporation

Freshwater is becoming more and more scarce, and the need to make use of other water resources is critical. Although processes such as Sea Water Reverse Osmosis (SWRO) exist, these processes are not without drawbacks, such as a brine with a high salt concentration being a byproduct of SWRO. Pervaporation is a potential solution to this problem, however the membranes used in these processes are prone to fouling and the high salt conditions are difficult to work around. Incorporating zwitterions into the polymeric backbone of these membranes has proven to be an effective way to increase fouling resistance. In this work, sulfobetaine – based zwitterions were incorporated into the backbone of poly(arylene ether sulfone) to synthesize sulfobetaine – modified poly(arylene ether sulfone) (SB-PAES) membranes, which were then tested in a cross-flow pervaporation apparatus to analyze salt rejection. SB-PAES membranes were cast with two different methods to create a consistent casting protocol. It was determined that casting solutions with a lower weight percent in petri dishes was optimal, but still needs more exploration. The SB-PAES membranes were tested with feed solutions of pure water and salt solutions with concentrations of 1 g/L, 5 g/L, and 10 g/L. Both 50% and 25% charge SB-PAES membranes were tested. The 50% charge membranes showed good flux and salt rejection over 99.9% for a 10 g/L feed solution, while the 25% charge membranes showed less flux and salt rejection around 85% for a feed solution of 10 g/L.
ContributorsMartin, Adam Lau (Author) / Green, Matthew D (Thesis advisor) / Lind, Mary L (Committee member) / Seo, Soyoung E (Committee member) / Arizona State University (Publisher)
Created2022