Matching Items (7)
Filtering by

Clear all filters

151280-Thumbnail Image.png
Description
The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create an ion-conducting polymer. Nuclear magnetic resonance (NMR) spectra indicates that the degree of chloromethylation was 114%. The chemical and physical

The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create an ion-conducting polymer. Nuclear magnetic resonance (NMR) spectra indicates that the degree of chloromethylation was 114%. The chemical and physical properties that were investigated include: the ionic conductivity, ion exchange capacity, water retention capacity, diameter and thickness swelling ratios, porosity, glass transition temperature, ionic conductivity enhanced by free salt addition, and the concentration and diffusivity of oxygen within the ionomer. It was found that the fully hydrated hydroxide form of the ionomer had a room temperature ionic conductivity of 39.92mS/cm while the chloride form had a room temperature ionic conductivity of 11.80mS/cm. The ion exchange capacity of the ionomer was found to be 1.022mmol/g. The water retention capacity (WRC) of the hydroxide form was found to be 172.6% while the chloride form had a WRC of 67.9%. The hydroxide form of the ionomer had a diameter swelling ratio of 34% and a thickness swelling ratio of 55%. The chloride form had a diameter swelling ratio of 32% and a thickness swelling ratio of 28%. The largest pore size in the ionomer was found to be 32.6nm in diameter. The glass transition temperature of the ionomer is speculated to be 344°C. A definite measurement could not be made. The room temperature ionic conductivity at 50% relative humidity was improved to 12.90mS/cm with the addition of 80% free salt. The concentration and diffusivity of oxygen in the ionomer was found to be 1.3 ±0.2mMol and (0.49 ±0.15)x10-5 cm2/s respectively. The ionomer synthesized in this research had material properties and performance that is comparable to other ionomers reported in the literature. This is an indication that this ionomer is suitable for further study and integration into a zinc-air battery. This thesis is concluded with suggestions for future research that is focused on improving the performance of the ionomer as well as improving the methodology.
ContributorsPadilla, Manuel (Author) / Friesen, Cody A (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2012
151054-Thumbnail Image.png
Description
Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel

Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.
ContributorsVillacorta, Rashida (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2012
189276-Thumbnail Image.png
Description
Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using

Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using octylamine, dodecylamine and hexadecylamine. Initial reactions with the three amines were performed with and without EG to observe and compare the terephthalamides obtained from these reactions to test this hypothesis. Various reaction conditions like concentration of reactants, temperature and time of reaction were later considered and employed to find the optimal conditions for the depolymerization of PET before confirming the catalytic properties of EG in the aminolysis reaction. The depolymerized products were subjected to attenuated total reflectance-infrared spectroscopy (ATR-IR Spectroscopy) to check for presence of important amide and ester peaks through their infrared absorption peaks, thermogravimetric analysis (TGA) to find their Td5 temperatures and differential scanning calorimetry (DSC) to check for endothermic melting temperature of the obtained products. These characterization techniques were used to understand, examine, and compare the different properties of the products obtained from different reaction mixtures. The three distinct amines considered for this reaction also showed differences in the conversion rate of PET under similar reaction conditions thus signifying the importance of selecting an appropriate amine reactant for the aminolysis process. Finally, the in-situ IR probe was used to determine the reaction kinetics of the aminolysis reaction and the formation and loss of products and reactants with time.
ContributorsBakkireddy, Adarsh (Author) / Green, Matthew (Thesis advisor) / Emady, Heather (Committee member) / Seo, Eileen S. (Committee member) / Arizona State University (Publisher)
Created2023
171680-Thumbnail Image.png
Description
High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of

High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of this waste plastic ends up in landfills or incineration to recover energy. Plastic production consumes a lot of energy and is associated with CO2 emissions. This method of disposing plastic only adds to the environmental pollution rather than improving it. Primary reasons for low recycling rate appear to be more political and financial. In the US, the rate of recycling was less than 10% whereas Japan showed a recycling rate of more than 80%. The other aspect of low recycling is financial. In order to make recycling a financially viable process, efforts have to be made to streamline the process of waste collection, segregation and technically feasible process. This study focusses on the technical aspect of the issue. Even though efforts have been made to recycle HDPE, none of the processes have been recycle HDPE with financial viability, recovering full value of plastic, minimum CO2 emissions and minimum change in properties of the polymer. This study focusses on effective recycling of HDPE with minimum change in its properties. Dissolution has been used to dissolve the polymer selectively and then reprecipitating the polymer using a non-solvent to obtain the polymer grains. This is followed by mixing additives to the polymer grains to minimize degradation of the polymer during the extrusion process. The polymer is then extruded in an extruder beyond its melting temperature. This process is repeated for 5 cycles. After each cycle, the polymer is tested for its properties using the Tensile Testing, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Mechanicalii Analysis (DMA). It was observed that the rheological properties of the polymer were maintained after the 5th recycle whereas the mechanical properties deteriorated after the 2nd recycle. Also, increase in carbonyl index was observed after 5th recycle.
ContributorsSaini, Rahul Rakesh (Author) / Green, Matthew (Thesis advisor) / Holloway, Julianne (Committee member) / Xie, Renxuan (Committee member) / Arizona State University (Publisher)
Created2022
171709-Thumbnail Image.png
Description
Freshwater is becoming more and more scarce, and the need to make use of other water resources is critical. Although processes such as Sea Water Reverse Osmosis (SWRO) exist, these processes are not without drawbacks, such as a brine with a high salt concentration being a byproduct of SWRO. Pervaporation

Freshwater is becoming more and more scarce, and the need to make use of other water resources is critical. Although processes such as Sea Water Reverse Osmosis (SWRO) exist, these processes are not without drawbacks, such as a brine with a high salt concentration being a byproduct of SWRO. Pervaporation is a potential solution to this problem, however the membranes used in these processes are prone to fouling and the high salt conditions are difficult to work around. Incorporating zwitterions into the polymeric backbone of these membranes has proven to be an effective way to increase fouling resistance. In this work, sulfobetaine – based zwitterions were incorporated into the backbone of poly(arylene ether sulfone) to synthesize sulfobetaine – modified poly(arylene ether sulfone) (SB-PAES) membranes, which were then tested in a cross-flow pervaporation apparatus to analyze salt rejection. SB-PAES membranes were cast with two different methods to create a consistent casting protocol. It was determined that casting solutions with a lower weight percent in petri dishes was optimal, but still needs more exploration. The SB-PAES membranes were tested with feed solutions of pure water and salt solutions with concentrations of 1 g/L, 5 g/L, and 10 g/L. Both 50% and 25% charge SB-PAES membranes were tested. The 50% charge membranes showed good flux and salt rejection over 99.9% for a 10 g/L feed solution, while the 25% charge membranes showed less flux and salt rejection around 85% for a feed solution of 10 g/L.
ContributorsMartin, Adam Lau (Author) / Green, Matthew D (Thesis advisor) / Lind, Mary L (Committee member) / Seo, Soyoung E (Committee member) / Arizona State University (Publisher)
Created2022
190886-Thumbnail Image.png
Description
Polypropylene, a non-biodegradable plastic with a higher c-c bond disassociation energy than other conventional polymers like Polyethylene (PE), is used to manufacture these three-layered masks. The amount of plastic pollution in the environment has grown tremendously, nearing million tons in a short period of time. As a result, the purpose

Polypropylene, a non-biodegradable plastic with a higher c-c bond disassociation energy than other conventional polymers like Polyethylene (PE), is used to manufacture these three-layered masks. The amount of plastic pollution in the environment has grown tremendously, nearing million tons in a short period of time. As a result, the purpose of this study is to reduce the environmental damage caused by facemasks. This M.S. thesis offers a concise overview of various thermochemical methods employed to depolymerize plastic waste materials. It emphasizes environmentally conscious and sustainable practices, specifically focusing on solvothermal processing. This innovative approach aims to convert discarded face masks into valuable resources, including hydrocarbons suitable for jet fuel and other useful products. The thesis provides an in-depth exploration of experimental investigations into solvothermal liquefaction techniques. Operating under specific conditions, namely, a temperature of 350°C and a reaction duration of 90 minutes, the results were notably impressive. These results included an exceptional conversion rate of 99.8%, an oil yield of 39.3%, and higher heating values (HHV) of 46.81 MJ/kg for the generated oil samples. It's worth noting that the HHV of the oil samples obtained through the solvothermal liquefaction (STL) method, at 46.82 MJ/kg, surpasses the HHV of gasoline, which stands at 43.4 MJ/kg. The significant role of the solvent in the depolymerization process involves the dissolution and dispersion of the feedstock through solvation. This reduces the required thermal cracking temperature by enhancing mass and thermal energy transfer. While solvolysis reactions between the solvent and feedstock are limited in thermal liquefaction, the primary depolymerization process follows thermal cracking. This involves the random scission of polypropylene (PP) molecules during heat treatment, with minimal polymerization, cyclization, and radical recombination reactions occurring through free radical mechanisms. Overall, this work demonstrates the feasibility of a highly promising technique for the effective chemical upcycling of polypropylene-based plastics into valuable resources, particularly in the context of jet fuel hydrocarbons, showcasing the comprehensive analytical methods employed to characterize the products of this innovative process.
ContributorsAkula, kapil Chandra (Author) / Deng, Shuguang (Thesis advisor) / Fini, Elham (Committee member) / Salifu, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2023
158686-Thumbnail Image.png
Description
Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding

Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding the relation between interfacial adhesion and water content inside photovoltaic modules can help mitigate detrimental power losses. Water content measurements via water reflectometry detection combined with 180° peel tests were used to study adhesion of module materials exposed to damp heat and dry heat conditions. The effect of temperature, cumulative water dose, and water content on interfacial adhesion between ethylene vinyl acetate and (1) glass, (2) front of the cell, and (3) backsheet was studied. Temperature and time decreased adhesion at all these interfaces. Water content in the sample during the measurement showed significant decreases in adhesion for the Backsheet/Ethylene vinyl acetate interface. Water dose showed little effect for the Glass/ Ethylene vinyl acetate and Backsheet/ Ethylene vinyl acetate interfaces, but there was significant adhesion loss with water dose at the front cell busbar/encapsulant interface. Initial tensile test results to monitor the effects of the mechanical properties ethylene vinyl acetate and backsheet showed water content increasing the strength of ethylene vinyl acetate during plastic deformation but no change in the strength of the backsheet properties. This mechanical property change is likely inducing variation along the peel interface to possibly convolute the adhesion measurements conducted or to explain the variation seen for the water saturated and dried peel test sample types.
ContributorsTheut, Nicholas (Author) / Bertoni, Mariana (Thesis advisor) / Holman, Zachary (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2020