Matching Items (3)
Filtering by

Clear all filters

149126-Thumbnail Image.png
Description

The operation of Glen Canyon Dam on the Colorado River affects several downstream resources and water uses including water supply for consumptive uses in Arizona, California, and Nevada, hydroelectric power production, endangered species of native fish, recreational angling for non-native fish, and recreational boating in the Grand Canyon. Decisions about

The operation of Glen Canyon Dam on the Colorado River affects several downstream resources and water uses including water supply for consumptive uses in Arizona, California, and Nevada, hydroelectric power production, endangered species of native fish, recreational angling for non-native fish, and recreational boating in the Grand Canyon. Decisions about the magnitude and timing of water releases through the dam involve trade-offs between these resources and uses. The numerous laws affecting dam operations create a hierarchy of legal priorities that should govern these decisions. At the top of the hierarchy are mandatory requirements for water storage and delivery and for conservation of endangered species. Other resources and water uses have lower legal priorities. The Glen Canyon Dam Adaptive Management Program ("AMP") has substituted collaborative decision making among stakeholders for the hierarchy of priorities created by law. The AMP has thereby facilitated non-compliance with the Endangered Species Act by the Bureau of Reclamation, which operates the dam, and has effectively given hydroelectric power production and non-native fisheries higher priorities than they are legally entitled to. Adaptive management is consistent with the laws governing operation of Glen Canyon Dam, but collaborative decision making is not. Nor is collaborative decision making an essential, or even logical, component of adaptive management. As implemented in the case of Glen Canyon Dam, collaborative decision making has actually stifled adaptive management by making agreement among stakeholders a prerequisite to changes in the operation of the dam. This Article proposes a program for adaptive, but not collaborative, management of Glen Canyon Dam that would better conform to the law and would be more amenable to adaptation and experimentation than would the current, stakeholder-centered program.

ContributorsFeller, Joseph M. (Author)
Created2008-07-18
149135-Thumbnail Image.png
Description

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior to disturbance" and that "restoring altered, damaged, O f destroyed lakes, rivers, and wetlands is a high-priority task." Effective restoration must be based on a clear definition of the value of riverine resources to society; on scientific studies that document ecosystem status and provide an understanding of ecosystem processes and resource interactions; on scientific studies that predict, mea- sure, and monitor the effectiveness of restoration techniques; and on engineering and economic studies that evaluate societal costs and benefits of restoration.

In the case of some large rivers, restoration is not a self-evident goal. Indeed, restoration may be impossible; a more feasible goal may be rehabilitation of some ecosystem components and processes in parts of the river (Gore and Shields 1995, Kondolfand Wilcock 1996, Stanford et al. 1996). In other cases, the appropriate decision may be to do nothing. The decision to manipulate ecosystem processes and components involves not only a scientific judgment that a restored or rehabilitated condition is achievable, but also a value judgment that this condition is more desirable than the status quo. These judgments involve prioritizing different river resources, and they should be based on extensive and continuing public debate.

In this article, we examine the appropriate role of science in determining whether or not to restore or rehabilitate the Colorado River in the Grand Canyon by summarizing studies carried out by numerous agencies, universities, and consulting firms since 1983. This reach of the Colorado extends 425 km between Glen Canyon Dam and Lake Mead reservoir (Figure 1). Efforts to manipulate ecosystem processes and components in the Grand Canyon have received widespread public attention, such as the 1996 controlled flood released from Glen Canyon Dam and the proposal to drain Lake Powell reservoir.

ContributorsSchmidt, John C. (Author) / Webb, Robert H. (Author) / Valdez, Richard A. (Author) / Marzolf, G. Richard (Author) / Stevens, Lawrence E. (Author)
Created1998-09
149140-Thumbnail Image.png
Description

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of

With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

ContributorsMelis, Theodore S. (Author) / Walters, Carl (Author) / Korman, Josh (Author)
Created2015