Matching Items (3)
Filtering by

Clear all filters

135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
168447-Thumbnail Image.png
Description
For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon recruitment order, and electrode size-dependent spatial selectivity. Optogenetics offers a

For two centuries, electrical stimulation has been the conventional method for interfacing with the nervous system. As interfaces with the peripheral nervous system become more refined and higher-resolution, several challenges appear, including immune responses to invasive electrode application, large-to-small axon recruitment order, and electrode size-dependent spatial selectivity. Optogenetics offers a solution that is less invasive, more tissue-selective, and has small-to-large axon recruitment order. By adding genes to express photosensitive proteins optogenetics provides neuroscientists the ability to genetically select cell populations to stimulate with simple illumination. However, optogenetic stimulation of peripheral nerves uses diffuse light to activate the photosensitive neural cell lines. To increase the specificity of stimulus response, research was conducted to test the hypothesis that multiple, focused light emissions placed around the circumference of optogenetic mouse sciatic nerve could be driven to produce differential responses in hindlimb motor movement depending on the pattern of light presented. A Monte Carlo computer simulation was created to model the number of emitters, the light emission size, and the focal power of accompanying micro-lenses to provide targeted stimulation to select regions within the sciatic nerve. The computer simulation results were used to parameterize the design of micro-lenses. By modeling multiple focused beams, only fascicles within a nerve diameter less than 1 mm are expected to be fully accessible to focused optical stimulation; a minimum of 4 light sources is required to generate a photon intensity at a point in a nerve over the initial contact along its surface. To elicit the same effect in larger nerves, focusing lenses would require a numerical aperture > 1. Microlenses which met the simulation requirements were fabricated and deployed on a flexible nerve cuff which was used to stimulate the sciatic nerve in optogenetic mice. Motor neuron responses from this stimulation were compared to global illumination; stimulation using the optical cuff resulted in fine motor movement of the extensor muscles of the digits in the hindlimb. Increasing optical power resulted in a shift to gross motor movement of hindlimb. Finally, varying illumination intensity across the cuff showed changes in the extension of individual digits.
ContributorsFritz, Nicholas (Author) / Blain Christen, Jennifer (Thesis advisor) / Abbas, James (Committee member) / Goryll, Michael (Committee member) / Sadleir, Rosalind (Committee member) / Helms-Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2021