Matching Items (4)
Filtering by

Clear all filters

151946-Thumbnail Image.png
Description
This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether it is purely protonic or due equally to a mobile OTf- or H(OTf)2-; component. The second electrolyte is built on the success of phosphoric acid as a fuel cell electrolyte, by designing a variant of the molecular acid that has increased temperature range without sacrifice of high temperature conductivity or open circuit voltage. The success is achieved by introduction of a hybrid component, based on silicon coordination of phosphate groups, which prevents decomposition or water loss to 250ºC, while enhancing free proton motion. Conductivity studies are reported to 285ºC and full H2/O2 cell polarization curves to 226ºC. The current efficiency reported here (current density per unit of fuel supplied per sec) is the highest on record. A power density of 184 (mW.cm-2) is achieved at 226ºC with hydrogen flow rate of 4.1 ml/minute. The third electrolyte is a novel type of ionic liquids which is made by addition of a super strong Brønsted acid to a super weak Brønsted base. Here it is shown that by allowing the proton of transient HAlCl4, to relocate on a very weak base that is also stable to superacids, we can create an anhydrous ionic liquid, itself a superacid, in which the proton is so loosely bound that at least 50% of the electrical conductivity is due to the motion of free protons. The protic ionic liquids (PILs) described, pentafluoropyridinium tetrachloroaluminate and 5-chloro-2,4,6-trifluoropyrimidinium tetrachloroaluminate, might be the forerunner of a class of materials in which the proton plasma state can be approached.
ContributorsAnsari, Younes (Author) / Angell, Charles A (Thesis advisor) / Richert, Ranko (Committee member) / Chizmeshya, Andrew (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
154289-Thumbnail Image.png
Description
Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional

Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements.

The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be ‘slaved’ to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein β-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins.

The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the electro-optical Kerr effect. A model was discussed which quantitatively captures the observed magnitudes and time dependencies of the NDE. Asymmetry in these rise and decay times was demonstrated as a consequence of the quadratic field dependence of the entropy change. It was demonstrated that the high bias field modifies the polarization response to the field, even including the zero field limit.
ContributorsSamanta, Subarna (Author) / Richert, Ranko (Thesis advisor) / Steimle, Timothy (Committee member) / Wolf, George H. (Committee member) / Arizona State University (Publisher)
Created2016
155041-Thumbnail Image.png
Description
Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date

Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much as four orders of magnitude, to ~ 10 mScm-1 in the now-classic case of CsHSO4) due to mobile protons. These superprotonic plastic crystals bring a “true solid state” alternative to polymer electrolytes, operating at mild temperatures (150-200ºC) without the requirement of humidification. This work describes a new class of solid acids based on silicon, which are of general interest. Its members have extraordinary conductivities, as high as 21.5 mS/cm at room temperature, orders of magnitude above any previous reported case. Three fuel cells are demonstrated, delivering current densities as high as 225 mA/cm2 at short-circuit at 130ºC in one example and 640 mA/cm2 at 87ºC in another. The new compounds are insoluble in water, and their remarkably high conductivities over a wide temperature range allow for lower temperature operations, thus reducing the risk of hydrogen sulfide formation and dehydration reactions. Additionally, plastic crystals have highly advantageous properties that permit their application as solid state electrolytes in lithium batteries. So far only doped materials have been presented. This work presents for the first time non-doped plastic crystals in which the lithium ions are integral part of the structure, as a solid state electrolyte. The new electrolytes have conductivities of 3 to 10 mS/cm at room temperature, and in one example maintain a highly conductive state at temperatures as low as -30oC. The malleability of the materials and single ion conducting properties make these materials highly interesting candidates as a novel class of solid state lithium conductors.
ContributorsKlein, Iolanda Santana (Author) / Angell, Charles A (Thesis advisor) / Buttry, Daniel A (Committee member) / Richert, Ranko (Committee member) / Arizona State University (Publisher)
Created2016
Description
This study aims to address the deficiencies of the Marcus model of electron transfer

(ET) and then provide modifications to the model. A confirmation of the inverted energy

gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes.

In addition to the macroscopic properties of the solvent, the physical

This study aims to address the deficiencies of the Marcus model of electron transfer

(ET) and then provide modifications to the model. A confirmation of the inverted energy

gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes.

In addition to the macroscopic properties of the solvent, the physical properties of the solvent

are incorporated in the model via the microscopic solvation model. For the molecules

studied in this dissertation, the rate constant first increases with cooling, in contrast to the

prediction of the Arrhenius law, and then decreases at lower temperatures. Additionally,

the polarizability of solute, which was not considered in the original Marcus theory, is included

by the Q-model of ET. Through accounting for the polarizability of the reactants, the

Q-model offers an important design principle for achieving high performance solar energy

conversion materials. By means of the analytical Q-model of ET, it is shown that including

molecular polarizability of C60 affects the reorganization energy and the activation barrier

of ET reaction.

The theory and Electrochemistry of Ferredoxin and Cytochrome c are also investigated.

By providing a new formulation for reaction reorganization energy, a long-standing disconnect

between the results of atomistic simulations and cyclic voltametery experiments is

resolved. The significant role of polarizability of enzymes in reducing the activation energy

of ET is discussed. The binding/unbinding of waters to the active site of Ferredoxin leads

to non-Gaussian statistics of energy gap and result in a smaller activation energy of ET.

Furthermore, the dielectric constant of water at the interface of neutral and charged

C60 is studied. The dielectric constant is found to be in the range of 10 to 22 which is

remarkably smaller compared to bulk water( 80). Moreover, the interfacial structural

crossover and hydration thermodynamic of charged C60 in water is studied. Increasing the

charge of the C60 molecule result in a dramatic structural transition in the hydration shell,

which lead to increase in the population of dangling O-H bonds at the interface.
ContributorsWaskasi, Morteza M (Author) / Matyushov, Dmitry (Thesis advisor) / Richert, Ranko (Committee member) / Heyden, Matthias (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2019