Matching Items (2)
Filtering by

Clear all filters

171515-Thumbnail Image.png
Description
The notion of the safety of a system when placed in an environment with humans and other machines has been one of the primary concerns of practitioners while deploying any cyber-physical system (CPS). Such systems, also called safety-critical systems, need to be exhaustively tested for erroneous behavior. This generates the

The notion of the safety of a system when placed in an environment with humans and other machines has been one of the primary concerns of practitioners while deploying any cyber-physical system (CPS). Such systems, also called safety-critical systems, need to be exhaustively tested for erroneous behavior. This generates the need for coming up with algorithms that can help ascertain the behavior and safety of the system by generating tests for the system where they are likely to falsify. In this work, three algorithms have been presented that aim at finding falsifying behaviors in cyber-physical Systems. PART-X intelligently partitions while sampling the input space to provide probabilistic point and region estimates of falsification. PYSOAR-C and LS-EMIBO aims at finding falsifying behaviors in gray-box systems when some information about the system is available. Specifically, PYSOAR-C aims to find falsification while maximizing coverage using a two-phase optimization process, while LS-EMIBO aims at exploiting the structure of a requirement to find falsifications with lower computational cost compared to the state-of-the-art. This work also shows the efficacy of the algorithms on a wide range of complex cyber-physical systems. The algorithms presented in this thesis are available as python toolboxes.
ContributorsKhandait, Tanmay Bhaskar (Author) / Pedrielli, Giulia (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Gopalan, Nakul (Committee member) / Arizona State University (Publisher)
Created2022
154276-Thumbnail Image.png
Description
There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing linear temporal logic as mission specification language for robot motion planning due to its expressiveness and scalability. Several algorithms have been proposed to achieve autonomous temporal logic planning. Also, several frameworks are designed to compose those discrete planners and continuous controllers to make sure the actual trajectory also satisfies the mission specification. However, most of these works use first-order kinematic models which are not accurate when quadrotors fly at high speed and cannot fully utilize the potential of quadrotors.

This thesis work describes a new design for a hierarchical hybrid controller that is based on a dynamic model and seeks to achieve better performance in terms of speed and accuracy compared with some previous works. Furthermore, the proposed hierarchical controller is making progress towards guaranteed satisfaction of mission specification expressed in Linear Temporal Logic for dynamic systems. An event-driven receding horizon planner is also utilized that aims at distributed and decentralized planning for large-scale navigation scenarios. The benefits of this approach will be demonstrated using simulations results.
ContributorsZhang, Xiaotong (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2016