Matching Items (5)
Filtering by

Clear all filters

135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
171822-Thumbnail Image.png
Description
Polyolefins have dominated global polymer production for the past 60 years, revolutionizing fields of medicine, construction, travel, packaging, and many more. However, with steadily increasing polyolefin production each year and traditionally long polyethylene (PE) and polypropylene degradation times, estimated on the order of 500 years or more, a massive challenge

Polyolefins have dominated global polymer production for the past 60 years, revolutionizing fields of medicine, construction, travel, packaging, and many more. However, with steadily increasing polyolefin production each year and traditionally long polyethylene (PE) and polypropylene degradation times, estimated on the order of 500 years or more, a massive challenge arises with accumulating plastic waste. While the end-of-life of polyolefins previously manufactured must be addressed, incorporation of sustainability and circularity into future commodity plastic design at the molecular level offers an opportunity to decrease their negative effects on the environment going forward. Herein, several approaches are described which aim to address the need for polymeric materials while introducing a sustainable approach to their design, either through incorporation of biosynthesized polymers or degradable units. In the first project, polymer blends of two biodegradable polymers were studied, and compared to the same blends containing a graft copolymer compatibilizer comprised of the two homopolymer counterparts. The compatibilized blends were expected to have superior mechanical performance to the uncompatibilized blend and potentially offer industrially relevant benefits. While this was not achieved, valuable insight into the polymer blend interactions were gained. The idea of compatibilizing polymer blends was further explored with blends of PE and a cellulose derivative with the aid of a custom ABA triblock compatibilizing agent. It was discovered that the compatibilizer reinforced the polymer blend by providing mechanical strength at the cost of flexibility. To approach sustainability from a different perspective, several segmented copolymer series based on telechelic PE oligomers were then synthesized and analyzed. The segmented systems exhibited similar structure to high density PE (HDPE), retained similar mechanical and thermal properties to commercial HDPE, but contained degradable units throughout the polymer backbone. Several fundamental principles were explored through the segmented and chain-extended polyolefin architecture, including the influence of reactive linkage (amide vs. ester), random vs. alternating segment structure, and PE segment molecular weight. The effects of tailoring polymer structure on thermal, mechanical, and morphological properties are described herein. The relationships established from these experiments may further guide future polymer design and contribute toward more sustainable polyolefin manufacturing.
ContributorsArrington, Anastasia Sergeevna (Author) / Long, Timothy E. (Thesis advisor) / Jin, Kailong (Committee member) / Biegasiewicz, Kyle F. (Committee member) / Matson, John B. (Committee member) / Arizona State University (Publisher)
Created2022
171422-Thumbnail Image.png
Description
Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of

Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of enzymes. VHPOs perform an electrophilic halogenation through the oxidation of halide ions with hydrogen peroxide as the terminal oxidant. This technique produces an electrophilic halide equivalent that can directly halogenate organic substrates. Despite the numerous known reaction capabilities of this enzyme class, their construction of intramolecular ring formation between a carbon and nitrogen atom has remained unreported. Herein, this study presents a development of a ‘new to nature’ chemical reaction for lactam synthesis. In pursuit of this type of reaction, it was discovered that wild type VHPOs (e.g., Curvularia inaequalis, Corallina officinalis, Corallina pilulifera, Acaryochloria marina) produce halogenated iminolactone compounds from acyclic amides in excellent yields and selectivity greater than 99 percent yield. The extension to chlorocyclizations will also be discussed.
ContributorsMerker, Kayla Rose (Author) / Biegasiewicz, Kyle (Thesis advisor) / Ackerman-Biegasiewicz, Laura (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2022
166232-Thumbnail Image.png
Description

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious metals. Iron is a more sustainable catalyst because it is abundant and inexpensive which is important for preserving the earth and making the organic chemistry more accessible. Along the same lines, light is a renewable energy source and has demonstrated its ability to aid in reactions. Overall, the goal of this paper is to explore the more sustainable alternatives to harsh and toxic organic chemistry practices through the use of Iron and light.

ContributorsBlenker, Grace (Author) / Ackerman-Biegasiewicz, Laura (Thesis director) / Redding, Kevin (Committee member) / Biegasiewicz, Kyle (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05