Matching Items (7)
Filtering by

Clear all filters

137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
149330-Thumbnail Image.png
Description
Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the

Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the existence of well-established methods for library synthesis. Microarrays represent a powerful tool for screening thousands of molecules, on a small chip, for candidates that interact with enzymes and modulate their functions. In this work, a method is presented for screening high-density arrays to discover peptides that bind and modulate enzyme activity. A viscous polyvinyl alcohol (PVA) solution was applied to array surfaces to limit the diffusion of product molecules released from enzymatic reactions, allowing the simultaneous measurement of enzyme activity and binding at each peptide feature. For proof of concept, it was possible to identify peptides that bound to horseradish peroxidase (HRP), alkaline phosphatase (APase) and â-galactosidase (â-Gal) and substantially alter their activities by comparing the peptide-enzyme binding levels and bound enzyme activity on microarrays. Several peptides, selected from microarrays, were able to inhibit â-Gal in solution, which demonstrates that behaviors selected from surfaces often transfer to solution. A mechanistic study of inhibition revealed that some of the selected peptides inhibited enzyme activity by binding to enzymes and inducing aggregation. PVA-coated peptide slides can be rapidly analyzed, given an appropriate enzyme assay, and they may also be assayed under various conditions (such as temperature, pH and solvent). I have developed a general method to discover molecules that modulate enzyme activity at desired conditions. As demonstrations, some peptides were able to promote the thermal stability of bound enzyme, which were selected by performing the microarray-based enzyme assay at high temperature. For broad applications, selected peptide ligands were used to immobilize enzymes on solid surfaces. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activities and stabilities. Peptide-modified surfaces may prove useful for immobilizing enzymes on surfaces with optimized orientation, location and performance, which are of great interest to the biocatalysis industry.
ContributorsFu, Jinglin (Author) / Woodbury, Neal W (Thesis advisor) / Johnston, Stephen A. (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
147965-Thumbnail Image.png
Description

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction using lipases, as a model for novel reactivities proceeding via

The use of enzyme-catalyst interfaces is underexplored in the field of biocatalysis, particularly in studies on enabling novel reactivity of enzymes. For this thesis, the HaloTag® protein tagging platform was proposed as a bioconjugation method for a pinacol coupling reaction using lipases, as a model for novel reactivities proceeding via ketyl radical intermediates and hydrogen-bonding-facilitated redox attenuation. After an initial lipase screening of 9 lipases, one lipase (Candida rugosa) was found to perform the pinacol coupling of p-anisaldehyde under standard conditions (fluorescein and 530nm light, 3% yield). Based on a retrosynthetic analysis for the photocatalyst-incorporated HaloTag® linker, the intermediates haloamine 1 and aldehyde 6 were synthesized. Further experiments are underway or planned to complete linker synthesis and conduct pinacol coupling experiments with a bioconjugated system. This project underscores the promising biocatalytic promiscuity of lipases for performing reactions proceeding through ketyl radical intermediates, as well as the underdeveloped potential of incorporating bioengineering principles like bioconjugation into biocatalysis to overcome kinetic barriers to electron transfer and optimize biocatalytic reactions.

ContributorsMcrae, Kenna Christine (Author) / Biegasiewicz, Kyle (Thesis director) / Ghirlanda, Giovanna (Committee member) / Moore, Ana (Committee member) / Department of Physics (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Despite comprising a variety of bioactive compounds that can be utilized as effective synthetic precursors, the construction of halogenated arenes often relies on hazardous reagents and conditions that pose regioselectivity issues in complex systems. Halodecarboxylation using vanadium-dependent haloperoxidases (VHPOs) has emerged as a sustainable alternative for the synthesis of halogenated

Despite comprising a variety of bioactive compounds that can be utilized as effective synthetic precursors, the construction of halogenated arenes often relies on hazardous reagents and conditions that pose regioselectivity issues in complex systems. Halodecarboxylation using vanadium-dependent haloperoxidases (VHPOs) has emerged as a sustainable alternative for the synthesis of halogenated arenes. In the Biegasiewicz group, we recently discovered that VHPOs can furnish 3-bromooxindoles from 3-carboxyindoles through a decarboxylation event, followed by oxidation. While this tandem process was exciting, the intermediates of this process, 3- bromoindoles are independently valuable reagents, which necessitated further investigation. Herein we examine the biocatalytic access to bromoindoles for which we addressed the major challenge of undesired oxidation event. The first preventative approach acylated the indole nitrogen, resulting in 1-acetylindole-3-CO2H. This could then be subjected to optimized enzymatic bromination conditions to produce 1-acetyl-3-bromoindole in 98% yield with CiVCPO. The second preventative approach was to modify the reaction conditions, furnishing 1-methyl-3-bromoindole in 73% yield from 1-methylindole-3- CO2H with AmVBPO.

ContributorsLee, Hyung Ji (Author) / Biegasiewicz, Kyle (Thesis director) / Ackerman-Biegasiewicz, Laura (Committee member) / Seo, Dong-Kyun (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
171422-Thumbnail Image.png
Description
Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of

Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of enzymes. VHPOs perform an electrophilic halogenation through the oxidation of halide ions with hydrogen peroxide as the terminal oxidant. This technique produces an electrophilic halide equivalent that can directly halogenate organic substrates. Despite the numerous known reaction capabilities of this enzyme class, their construction of intramolecular ring formation between a carbon and nitrogen atom has remained unreported. Herein, this study presents a development of a ‘new to nature’ chemical reaction for lactam synthesis. In pursuit of this type of reaction, it was discovered that wild type VHPOs (e.g., Curvularia inaequalis, Corallina officinalis, Corallina pilulifera, Acaryochloria marina) produce halogenated iminolactone compounds from acyclic amides in excellent yields and selectivity greater than 99 percent yield. The extension to chlorocyclizations will also be discussed.
ContributorsMerker, Kayla Rose (Author) / Biegasiewicz, Kyle (Thesis advisor) / Ackerman-Biegasiewicz, Laura (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2022
166232-Thumbnail Image.png
Description

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious metals. Iron is a more sustainable catalyst because it is abundant and inexpensive which is important for preserving the earth and making the organic chemistry more accessible. Along the same lines, light is a renewable energy source and has demonstrated its ability to aid in reactions. Overall, the goal of this paper is to explore the more sustainable alternatives to harsh and toxic organic chemistry practices through the use of Iron and light.

ContributorsBlenker, Grace (Author) / Ackerman-Biegasiewicz, Laura (Thesis director) / Redding, Kevin (Committee member) / Biegasiewicz, Kyle (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
166075-Thumbnail Image.png
Description

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable features are difficult to image using this method due to

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable features are difficult to image using this method due to the large size requirements, therefore antibodies designed specifically for binding these proteins have been utilized to better identify the proteins. By using an existing antibody that binds to stilbene, NCAAs containing this molecule can be used as a linker between proteins and an antibody. Stilbene containing amino acids can be integrated into proteins to make this process more access able. In this paper, synthesis methods for various NCAAs containing stilbene were proposed. The resulting successfully synthesized NCAAs were E)-N6-(5-oxo-5-((4-styrylphenyl) amino) pentanoyl) lysine, (R,E)-2-amino-3-(5-oxo-5-((4-styrylphenyl)amino)pentanamido)propanoic acid, (E)-2-amino-5-(5-oxo-5-((4-styrylphenyl) amino) pentanamido) pentanoic acid. A synthesis for three more shorter amino acids, (R,E)-2-amino-3-(3-oxo-3-((4-styrylphenyl) amino) propanamido) propanoic acid, (E)-2-amino-5-(3-oxo-3-((4-styrylphenyl) amino) propanamido) pentanoic acid, and (E)-N6-(3-oxo-3-((4-styrylphenyl) amino) propanoyl) lysine, is also proposed.

ContributorsJenkins, Bryll (Author) / Mills, Jeremy (Thesis director) / Ghirlanda, Giovanna (Committee member) / Nannenga, Brent (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05