Matching Items (5)
Filtering by

Clear all filters

155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
173254-Thumbnail Image.png
Description

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm cells that carry male-producing Y chromosomes move through liquid faster than the cells that carry female-producing X chromosomes. As a result of his findings, Ericsson suggested suspending a semen sample in a viscous liquid made from albumin protein, and collecting only sperm that quickly pass through the liquid. Shortly after Ericsson described his method, researchers demonstrated that it was effective for sex selection. However, later studies contested those results. Despite that, the Ericsson method is still utilized by couples in 2018 as a means of sex selection and was the first sperm separation technique used in combination with artificial insemination to enable people to select the sex of their children.

Created2019-09-20
Description

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and gynecology researcher and physician, co-wrote the book. Shettles developed the methods detailed in the book during the 1960s. Although the authors claim a high success rate, some researchers have contested the validity of the methods proposed in Your Baby’s Sex: Now You Can Choose. Despite contradicting evidence for the effectiveness of the methods, the book itself has remained popular throughout its forty consecutive years in print. Since its original publication, Your Baby’s Sex: Now You Can Choose has reached a large audience, with over 1.5 million copies of the book sold worldwide, while adding to the controversy about the ethics of sex selection research.

Created2019-10-31
Description
The regulation of gene expression, timing, location, and amount of a given project, ultimately affects the cellular structure and function. More broadly, gene regulation is the basis for cellular differentiation and development. However, gene expression is not uniform among individuals and varies greatly between genetic males and females. Males are

The regulation of gene expression, timing, location, and amount of a given project, ultimately affects the cellular structure and function. More broadly, gene regulation is the basis for cellular differentiation and development. However, gene expression is not uniform among individuals and varies greatly between genetic males and females. Males are hemizygous for the X chromosome, whereas females have two X chromosome copies. Contributing to the sex differences in gene expression between males and females are the sex chromosomes, X and Y. Gene expression differences on the autosomes and the X chromosome between males (46, XY) and females (46, XX) may help inform on the mechanisms of sex differences in human health and disease. For example, XX females are more likely to suffer from autoimmune diseases, and genetic XY males are more likely to develop cancer. Characterizing sex-specific gene expression among human tissues will help inform the molecular mechanisms driving sex differences in human health and disease. This dissertation covers a range of critical aspects in gene expression. In chapter 1, I will introduce a method to align RNA-Seq reads to a sex chromosome complement informed reference genome that considers the X and Y chromosomes' shared evolutionary history. Using this approach, I show that more genes are called as sex differentially expressed in several human adult tissues compared to a default reference alignment. In chapter 2, I characterize gene expression in an early formed tissue, the human placenta. The placenta is the DNA of the developing fetus and is typically XY male or XX female. There are well-documented sex differences in pregnancy complications, yet, surprisingly, there is no observable sex difference in expression of innate immune genes, suggesting expression of these genes is conserved. In chapter 3, I investigate gene expression in breast cancer cell lines. Cancer arises in part due to the disruption of gene expression. Here I show 19 tumor suppressor genes become upregulated in response to a synthetic protein treatment. In chapter 4, I discuss gene and allele-specific expression in Nasonia jewel wasp. Chapter 4 is a replication and extension study and discusses the importance of reproducibility.
ContributorsOlney, Kimberly (Author) / Wilson, Melissa A (Thesis advisor) / Hinde, Katherine (Committee member) / Buetow, Kenneth (Committee member) / Banovich, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
173830-Thumbnail Image.png
Description

In the 1960s in the United States Landrum B. Shettles developed the Shettles method, which is a procedure for couples to use prior to and during an intercourse to increase their chances of conceiving a fetus of their desired sex. Shettles, a physician, who specialized in obstetrics and gynecology, found

In the 1960s in the United States Landrum B. Shettles developed the Shettles method, which is a procedure for couples to use prior to and during an intercourse to increase their chances of conceiving a fetus of their desired sex. Shettles, a physician, who specialized in obstetrics and gynecology, found a difference in the size and shape of male sperm cells that he correlated with the different sex chromosomes they carry. Based on that finding, Shettles developed procedures for couples to follow based on whether they desire a female or a male fetus and published them in the 1970 book, Your Baby’s Sex: Now You Can Choose. The Shettles method is based on the idea that male-producing sperm prefer alkaline conditions, whereas female-producing sperm prefer acidic conditions. The method provides couples with a procedure intended to enhance the favored environment for the sperm that will supposedly produce the desired sex, including female douches to be used before intercourse and how to time sexual intercourse within the female menstrual cycle. The book Your Baby’s Sex: Now You Can Choose, made the Shettles method a widely popular method of natural sex selection.

Created2019-04-03