Matching Items (2)
Filtering by

Clear all filters

153507-Thumbnail Image.png
Description
CubeSats are a newly emerging, low-cost, rapid development platform for space exploration research. They are small spacecraft with a mass and volume of up to 12 kg and 12,000 cm3, respectively. To date, CubeSats have only been flown in Low Earth Orbit (LEO), though a large number are currently being

CubeSats are a newly emerging, low-cost, rapid development platform for space exploration research. They are small spacecraft with a mass and volume of up to 12 kg and 12,000 cm3, respectively. To date, CubeSats have only been flown in Low Earth Orbit (LEO), though a large number are currently being designed to be dropped off by a mother ship on Earth escape trajectories intended for Lunar and Martian flyby missions. Advancements in propulsion technologies now enable these spacecraft to achieve capture orbits around the moon and Mars, providing a wealth of scientific data at low-cost. However, the mass, volume and launch constraints of CubeSats severely limit viable propulsion options.

We present an innovative propulsion solution using energy generated by onboard photovoltaic panels to electrolyze water, thus producing combustible hydrogen and oxygen for low-thrust applications. Water has a high storage density allowing for sufficient fuel within volume constraints. Its high enthalpy of formation provides more fuel that translates into increased ∆V and vastly reduced risk for the launch vehicle. This innovative technology poses significant challenges including the design and operation of electrolyzers at ultra-cold temperatures, the efficient separation of the resultant hydrogen and oxygen gases from liquid water in a microgravity environment, as well as the effective utilization of thrust to produce desired trajectories.

Analysis of the gas combustion and flow through the nozzle using both theoretical equations and finite-volume CFD modeling suggests an expected specific impulse of 360 s. Preliminary results from AGI's Satellite Toolkit (STK) indicate that the ΔV produced by the system for an 8kg CubeSat with 6kg of propellant in a LEO orbit (370 km altitude) is sufficient for an earth escape trajectory, lunar capture orbit or even a Mars capture orbit. These results suggest a promising pathway for an in-depth study supported by laboratory experiments to characterize the strengths and weaknesses of the proposed concept.
ContributorsPothamsetti, Ramana Kumar (Author) / Thangavelautham, Jekanthan (Thesis advisor) / Dahm, Werner J.A (Committee member) / Solanki, Kiran N (Committee member) / Arizona State University (Publisher)
Created2015
157787-Thumbnail Image.png
Description
Niobium is the primary material for fabricating superconducting radio-frequency (SRF) cavities. However, presence of impurities and defects degrade the superconducting behavior of niobium twofold, first by nucleating non-superconducting phases and second by increasing the residual surface resistance of cavities. In particular, niobium absorbs hydrogen during cavity fabrication and promotes precipitation

Niobium is the primary material for fabricating superconducting radio-frequency (SRF) cavities. However, presence of impurities and defects degrade the superconducting behavior of niobium twofold, first by nucleating non-superconducting phases and second by increasing the residual surface resistance of cavities. In particular, niobium absorbs hydrogen during cavity fabrication and promotes precipitation of non-superconducting niobium hydride phases. Additionally, magnetic flux trapping at defects leads to a normal conducting (non-superconducting) core which increases surface resistance and negatively affects niobium performance for superconducting applications. However, undelaying mechanisms related to hydride formation and dissolution along with defect interaction with magnetic fields is still unclear. Therefore, this dissertation aims to investigate the role of defects and impurities on functional properties of niobium for SRF cavities using first-principles methods.

Here, density functional theory calculations revealed that nitrogen addition suppressed hydrogen absorption interstitially and at grain boundaries, and it also decreased the energetic stability of niobium hydride precipitates present in niobium. Further, hydrogen segregation at the screw dislocation was observed to transform the dislocation core structure and increase the barrier for screw dislocation motion. Valence charge transfer calculations displayed a strong tendency of nitrogen to accumulate charge around itself, thereby decreasing the strength of covalent bonds between niobium and hydrogen leading to a very unstable state for interstitial hydrogen and hydrides. Thus, presence of nitrogen during processing plays a critical role in controlling hydride precipitation and subsequent SRF properties.

First-principles methods were further implemented to gain a theoretical perspective about the experimental observations that lattice defects are effective at trapping magnetic flux in high-purity superconducting niobium. Full-potential linear augmented plane-wave methods were used to analyze the effects of magnetic field on the superconducting state surrounding these defects. A considerable amount of trapped flux was obtained at the dislocation core and grain boundaries which can be attributed to significantly different electronic structure of defects as compared to bulk niobium. Electron redistribution at defects enhances non-paramagnetic effects that perturb superconductivity, resulting in local conditions suitable for flux trapping. Therefore, controlling accumulation or depletion of charge at the defects could mitigate these tendencies and aid in improving superconductive behavior of niobium.
ContributorsGarg, Pulkit (Author) / Solanki, Kiran N (Thesis advisor) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2019