Matching Items (9)
Filtering by

Clear all filters

149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149808-Thumbnail Image.png
Description
Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic

Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic scale in sixteenth notes, at sixty quarter-note beats per minute, three times, with a metronome and a short pause between repetitions, and forming three pedagogical hand postures. Following the CyberGloves® tasks, each subject completed a questionnaire about equipment, playing history, practice routines, health practices, and hand usage during computer and sports activities. CyberGlove® data were analyzed to find average hand/finger postures and differences for each pitch across subjects, subject variance in the performance task and differences in ascending and descending postures of the chromatic scale. The data were also analyzed to describe generalized finger posture characteristics based on hand size, whether right hand thumb position affects finger flexion, and whether professional clarinetists use similar finger/hand postures when performing on clarinet, holding a tennis ball, allowing hands to hang freely by the sides, or form a "C" shape. The findings of this study suggest an individual approach based on hand size is necessary for teaching clarinet hand posture.
ContributorsHarger, Stefanie (Author) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Koonce, Frank (Committee member) / Norton, Kay (Committee member) / Stauffer, Sandy (Committee member) / Arizona State University (Publisher)
Created2011
153961-Thumbnail Image.png
Description
Background: Heart failure is the leading cause of hospitalization in older adults and has the highest 30-day readmission rate of all diagnoses. An estimated 30 to 60 percent of older adults lose some degree of physical function in the course of an acute hospital stay. Few studies have addressed the

Background: Heart failure is the leading cause of hospitalization in older adults and has the highest 30-day readmission rate of all diagnoses. An estimated 30 to 60 percent of older adults lose some degree of physical function in the course of an acute hospital stay. Few studies have addressed the role of posture and mobility in contributing to, or improving, physical function in older hospitalized adults. No study to date that we are aware of has addressed this in the older heart failure population.

Purpose: To investigate the predictive value of mobility during a hospital stay and patterns of mobility during the month following discharge on hospital readmission and 30-day changes in functional status in older heart failure patients.

Methods: This was a prospective observational study of 21 older (ages 60+) patients admitted with a primary diagnosis of heart failure. Patients wore two inclinometric accelerometers (rib area and thigh) to record posture and an accelerometer placed at the ankle to record ambulatory activity. Patients wore all sensors continuously during hospitalization and the ankle accelerometer for 30 days after hospital discharge. Function was assessed in all patients the day after hospital discharge and again at 30 days post-discharge.

Results: Five patients (23.8%) were readmitted within the 30 day post-discharge period. None of the hospital or post-discharge mobility measures were associated with readmission after adjustment for covariates. Higher percent lying time in the hospital was associated with slower Timed Up and Go (TUG) time (b = .08, p = .01) and poorer hand grip strength (b = -13.94, p = .02) at 30 days post-discharge. Higher daily stepping activity during the 30 day post-discharge period was marginally associated with improvements in SPPB scores at 30 days (b = <.001, p = .06).

Conclusion: For older heart failure patients, increased time lying while hospitalized is associated with slower walking time and poor hand grip strength 30 days after discharge. Higher daily stepping after discharge may be associated with improvements in physical function at 30 days.
ContributorsFloegel, Theresa A (Author) / Buman, Matthew P (Thesis advisor) / Hooker, Steven (Committee member) / Dickinson, Jared (Committee member) / DerAnanian, Cheryl (Committee member) / McCarthy, Marianne (Committee member) / Arizona State University (Publisher)
Created2015
154603-Thumbnail Image.png
Description
The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when

The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when doing Sit-to-Stand (STS) movement: the postural symmetry in mediolateral direction. A symmetry score, calculated by the data obtained from a Kinect RGB-D camera, was proposed to reflect the mediolateral postural symmetry degree and was used to drive a real-time audio feedback designed in MAX/MSP to help users adjust themselves to perform their movement in a more symmetrical way during STS. The symmetry score was verified by calculating the Spearman correlation coefficient with the data obtained from Inertial Measurement Unit (IMU) sensor and got an average value at 0.732. Five healthy adults, four males and one female, with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment and the results showed that the low-cost Kinect-based system has the potential to train users to perform a more symmetrical movement in mediolateral direction during STS movement.
ContributorsZhou, Henghao (Author) / Turaga, Pavan (Thesis advisor) / Ingalls, Todd (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2016
153191-Thumbnail Image.png
Description
Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are

Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are presented but, to the best of our knowledge, the effects of real-time feedback of step length and uprightness of posture on gait and posture have not been specifically investigated. If it can be demonstrated that real-time feedback can improve posture and gait, the resultant knowledge could be used to design effective rehabilitation strategies to improve quality of life in this population.

In this feasibility study, we have developed a treadmill-based experimental paradigm to provide feedback of step length and upright posture in real-time. Ten subjects (mean age 65.9 ± 7.6 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were evaluated in their ability to successfully utilize real-time feedback presented during quiet standing and treadmill walking tasks during a single data collection session in their medication-on state. During quiet standing tasks in which back angle feedback was provided, subjects were asked to utilize the feedback to maintain upright posture. During treadmill walking tasks, subjects walked at their self-selected speed for five minutes without feedback, with feedback of back angle, or with feedback of step length. During walking tasks with back angle feedback, subjects were asked to utilize the feedback to maintain upright posture. During walking tasks with step length feedback, subjects were asked to utilize the feedback to walk with increased step length. During quiet standing tasks, measurements of back angle were obtained; during walking tasks, measurements of back angle, step length, and step time were obtained.

Subjects stood and walked with significantly increased upright posture during the tasks with real-time back angle feedback compared to tasks without feedback. Similarly, subjects walked with significantly increased step length during tasks with real-time step length feedback compared to tasks without feedback. These results demonstrate that people with PD can utilize real-time feedback to improve upright posture and gait.
ContributorsJellish, Jeremy (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
155981-Thumbnail Image.png
Description
Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in people with PD do not respond well to pharmaceutical and

Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in people with PD do not respond well to pharmaceutical and surgical treatments, novel rehabilitative therapies to alleviate these impairments are necessary. Many studies have confirmed that people with PD can improve their walking patterns when external cues are presented. Only a few studies have provided explicit real-time feedback on performance, but they did not report how well people with PD can follow the cues on a step-by-step basis. In a single-session study using a novel-treadmill based paradigm, our group had previously demonstrated that people with PD could follow step-length and back angle feedback and improve their gait and posture during treadmill walking. This study investigated whether a long-term (6-week, 3 sessions/week) real-time feedback training (RTFT) program can improve overground gait, upright posture, balance, and quality of life. Three subjects (mean age 70 ± 2 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were enrolled and participated in the program. The RTFT sessions involved walking on a treadmill while following visual feedback of step length and posture (one at any given time) displayed on a monitor placed in front of the subject at eye-level. The target step length was set between 110-120% of the step length obtained during a baseline non-feedback walking trial and the target back angle was set at the maximum upright posture exhibited during a quiet standing task. Two subjects were found to significantly improve their posture and overground walking at post-training and these changes were retained six weeks after RTFT (follow-up) and the third subject improved his upright posture and gait rhythmicity. Furthermore, the magnitude of the improvements observed in these subjects was greater than the improvements observed in reports on other neuromotor interventions. These results provide preliminary evidence that real-time feedback training can be used as an effective rehabilitative strategy to improve gait and upright posture in people with PD.
ContributorsBaskaran, Deepika (Author) / Krishnamurthi, Narayanan (Thesis advisor) / Abbas, James (Thesis advisor) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2017
155964-Thumbnail Image.png
Description
Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis

Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis users and non-amputee control subjects. This lack of sensitivity limits the ability of clinicians to make informed clinical decisions and presents challenges with insurance reimbursement for comprehensive clinical care and advanced prosthetic devices. These issues have directly impacted clinical care by restricting device options, increasing financial burden on clinics, and limiting support for research and development. This work aims to establish experimental methods and outcome measures that are more sensitive than traditional methods to balance and mobility changes in prosthesis users. Methods and analysis techniques were developed to probe aspects of balance and mobility control that may be specifically impacted by use of a prosthesis and present challenges similar to those experienced in daily life that could improve the detection of balance and mobility changes. Using the framework of cognitive resource allocation and dual-tasking, this work identified unique characteristics of prosthesis users’ postural control and developed sensitive measures of gait variability. The results also provide broader insight into dual-task analysis and the motor-cognitive response to demanding conditions. Specifically, this work identified altered motor behavior in prosthesis users and high cognitive demand of using a prosthesis. The residual standard deviation method was developed and demonstrated to be more effective than traditional gait variability measures at detecting the impact of dual-tasking. Additionally, spectral analysis of the center of pressure while standing identified altered somatosensory control in prosthesis users. These findings provide a new understanding of prosthetic use and new, highly sensitive techniques to assess balance and mobility in prosthesis users.
ContributorsHoward, Charla Lindley (Author) / Abbas, James (Thesis advisor) / Buneo, Christopher (Committee member) / Lynskey, Jim (Committee member) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
Description

I performed Franz Liszt's Hungarian Rhapsody No. 2 and orally presented the findings of my written literature review. I addressed the relationship between the brain and muscles, and how complex neural networks develop in pianists. I focused on how proprioception, manual dexterity, somatosensory motor integration and fine motor function related

I performed Franz Liszt's Hungarian Rhapsody No. 2 and orally presented the findings of my written literature review. I addressed the relationship between the brain and muscles, and how complex neural networks develop in pianists. I focused on how proprioception, manual dexterity, somatosensory motor integration and fine motor function related to the technical aspects of my piano performance.

ContributorsZiegler, Danielle (Author) / Norton, Kay (Thesis director) / Wu, Selene (Committee member) / Barrett, The Honors College (Contributor) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor)
Created2021-12
155319-Thumbnail Image.png
Description
String players have been identified as the most affected group of instrumentalists suffering from musculoskeletal disorders, and most of the problems are related to posture. The high prevalence of injuries among string players suggests that there is room in the music curriculum for a program tailored to this population and

String players have been identified as the most affected group of instrumentalists suffering from musculoskeletal disorders, and most of the problems are related to posture. The high prevalence of injuries among string players suggests that there is room in the music curriculum for a program tailored to this population and that can provide both immediate and long-term solutions. Pilates is a mind-body conditioning method of exercises and a philosophy that shares many similarities with string playing technique and performance, which suggests that its practice can be beneficial to improve not only the posture of string players but also various other areas. Studies about Pilates as a treatment show the varied areas in which Pilates can help, which are all of interest to instrumentalists. However, the application of Pilates into the music curriculum as a way to help string players improve awareness and reduce injuries has not yet been fully explored. This document addresses the similarities between Pilates and string playing, identifies postural tendencies of string players, and demonstrates how specific Pilates exercises can help counteract asymmetries, restore balance, and reduce the number of musculoskeletal injuries of string players. All anatomical drawings included in this document were adapted from other sources, as cited, or originally drawn by the author.
ContributorsGallo, María Luciana (Author) / Norton, Kay (Thesis advisor) / Landschoot, Thomas (Thesis advisor) / Humphreys, Jere T. (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2017